
Improving Systems Engineering Effectiveness in
Rapid Response Development Environments

Richard Turner
School of Systems and Enterprises

Stevens Institute of Technology
Hoboken, NJ, 07030, USA

Richard.Turner@stevens.edu

Raymond Madachy
Department of Systems Engineering

Naval Postgraduate School
Monterey, CA, 93943, USA

rjmadach@nps.edu

Dan Ingold, Jo Ann Lane
Center for Systems and Software Engineering

University of Southern California
Los Angeles, CA, 90089, USA

dingold@usc.edu, jolane@usc.edu

Abstract—Systems engineering is often ineffective in
development environments where large, complex, brownfield
systems of systems are evolved through parallel development of
new capabilities in response to external, time-sensitive
requirements. This paper defines a conceptual framework to
improve that effectiveness and better integrate the systems
engineering and software engineering processes. The
framework is based on a services approach to systems
engineering and the use of kanban techniques to schedule
scarce enterprise systems engineering resources across
multiple related systems and software development projects.
The framework also addresses the differing value of work
items to multiple stakeholders in the scheduling and
coordination processes. Models and simulations are being used
to capture, refine and validate the framework prior to in vivo
experimentation.

Keywords—systems engineering process; process integration;
service-based systems engineering; value-based engineering;
integrating software and systems engineering; kanban processes

I. INTRODUCTION AND BACKGROUND
Traditional systems engineering (SE) developed half a

century ago, primarily driven by the challenges faced in the
aerospace and defense industries. The environment was
fairly uniform – hardware-driven, long lived, single mission.
The result of this uniformity was practices that worked well
in that specific context were seen as “best practices,” and
came to define the discipline of systems engineering.
Engineering principles involving agility and leanness have
been adopted to address non-determinism in software
systems. [1] [2] [3]. Combining agile-lean software
experience with system engineering fundamentals can
provide practical, principle-driven agile-lean systems
engineering approaches for the design of complex or
evolving hardware-software-human systems [4]. This may
help alleviate the observed poor performance of systems

engineering in meeting schedule and resource constraints [5]
[6] [7].

This research proposes marrying the ideas of a services
perspective with a lean-inspired pull scheduling technique
such as kanban, to create a radical departure from the normal
concepts of systems engineering. In an environment where
there is an existing complex system constantly evolving
through rapid-response software application development,
systems engineering is the glue that holds all of the various
projects together. It is critical that it be integrated into the
various projects without unduly delaying them, and that the
limited resource of systems engineering skills be efficiently
and effectively deployed so as not to unduly delay any
particular project and still meet the overall system priorities.
The services approach better integrates SE into the
development cycle, and the kanban-based scheduling
maximizes the value flow of the systems engineering tasks
performed. This project has developed an example of the
combined approach and is simulating it with a hybrid of
discrete event, continuous flow, and agent-based models and
typical work streams to determine if the idea is sound
enough to actually pilot in an operational environment.

II. BEGINNING WITH KANBAN

A. Background
Kanban is a method associated with lean manufacturing

and the Toyota Production System. A kanban (signal card)
approach provides a visual means of managing the flow
within a process. The signal cards are created to the agreed
capacity of the process and one card is associated with each
piece of work. Here, work can mean the creation of a part,
the integration of a part into an assembly, the completion of a
particular analysis process, or whatever bounded and
completeable task you wish to track through the process.
Once all of the cards have been associated, no more work in
that process can begin until some piece of work is completed
and the card becomes available. An often used example of a

simple kanban is the use of a limited number of tickets for
entry into the Japanese Imperial Gardens [8]. The
fundamental idea is to use visual signals to synchronize the
flow of work with process capacity, limit the waste of work
interruption, minimize excess inventory or delay due to
shortage, prevent unnecessary rework, and provide a means
of tracking work progress.

In knowledge work, the components of production are
ideas and information. In software and systems, kanban
systems have evolved into a means of smoothing flow by
balancing work with resource capability. The concept was
extended to include the limiting of work in progress
according to capacity. Work cannot be started until there is
an available appropriate resource. In that way, it is
characterized as a “pull” system, since the work is pulled
into the process rather than “pushed” via a schedule.

B. Concept
The following concept was derived from [8] [9] [10] [11]

[12] [13], workshops, and discussions with an industry
working group. A kanban system is a visually monitored set
of activities, where each activity has its own task queue and
set of resources to add value to work units that flow through
it. The fact that queues are included in the system allows
costs of delay and other usually invisible aspects of
scheduling to be front and center in decision making. Queues
also provide a vast body of experience and underlying
science from the queuing theory discipline. Control of the
kanban system is generally maintained through batch size,
Work in Progress (WIP) limits and Classes-of-Service (COS)
definitions that prioritize work with respect to risk.

The visual representation of work is critical to kanban
success, because it provides immediate understanding of the
state of flow through the set of activities. This transparency
makes process delays or resource issues easily visible and
enables the team to recognize and react immediately to
resolve the cause. Kanban is also an embodiment of the
continuous improvement concept (kaizen). Flow through the
kanban system is measured and tracked through statistical
methods that support tuning the control parameters to
improve the system. Flow measures also provide a good
handle for effectiveness comparison.

WIP is partially-completed work, equivalent to the
manufacturing concept of parts inventory waiting to be
processed by a production step. WIP accumulates ahead of
bottlenecks unless upstream production is curtailed or the
bottleneck resolved. WIP in knowledge work can be roughly
associated to the number of tasks that have been started and
not completed. Limiting WIP is a concept to control flow
and enhance value by specifically limiting the amount of
work to be assigned to a set of resources (a WIP Limit). WIP
limits accomplish several goals: they lower the context-
switching overhead that impacts individuals or teams
attempting to handle several simultaneous tasks; they
accelerate useful value by completing work in progress
before starting new work; and, they provide for reasonable
and sustainable resource work loads.

Using small batch sizes is a supporting concept to WIP.
Reducing batch size limits rework and provide flexibility in

scheduling and response to unforeseen change. Smaller batch
sizes help stabilize the process flow and allow downstream
processes to consume the batches smoothly, rather than in a
start-and-stop fashion that makes inefficient use of resources.
The move from “one step to glory” system initiatives to
iterative, deployable increments is an example of reducing
batch size. Incremental builds and ongoing, continuous
integration also approximate the effect of small batch sizes.

So as not to confuse readers with the traditional
understanding of kanban in manufacturing, we refer to an
implementation of such a system in systems or software
engineering as a Kanban-based Scheduling System, or KSS.

III. DEFINING AN SE KSS FOR RAPID-RESPONSE
DEVELOPMENT

A. An Elemental KSS
In Figure 1 we define our core building block concept of

a KSS. We intend that this model be recursive at many levels
to allow for complex implementations; this is shown in
Figure 2. While we currently believe tasks and their
associated parameters coupled with the visual representation
of flow are sufficient, we may introduce new concepts to
enable better communications and synchronization between
the various interacting systems. More about the specifics of
the model can be found in [8] and [19].

Figure 1. Kanban Scheduling System Model

Figure 2. Kanban Scheduling System Hierarchy

There is much evidence suggesting a KSS such as this
will work in a software development project, but applying it
to systems engineering, particularly where the SE
practitioners coordinate their work across multiple systems is
unique in our experience, and requires a fundamentally
different understanding of systems engineering.

B. Systems Engineering as a Service
Systems engineering has struggled with acceptance in

rapid-response environments, partly because it tends to
operate with a broader scope and with the assumption that a
holistic view requires a deeper and fuller level of knowledge
than is often available in the rapid response time frame. In
rapid response environments, the time scale constrains the
project scope, and detailed analysis up front is perceived as
less achievable.

Agile and lean assume holism comes from a learning
process and is valuable even when incomplete. The idea of
using a pull system for systems engineering is an attempt to
merge the breadth of SE into the rapid development rather
than lay it on top of the activities. Our idea of a KSS for
systems engineering is shown in Figure 3. We believe it will
support better integration of SE into the rapid response
software environment, better utilize scarce systems
engineering resources, and improve the overall system-wide
performance through a shared, more holistic resource
allocation component.

Figure 3. Kanban Scheduling System Hierarchy

In general, systems engineering is involved in three kinds
of activities in rapid response environments: Up front,
continuous, and taskable. Up front activities are critical in
greenfield projects, but are important in all systems and
system of systems evolution. They include creating
operational concepts, needs analysis, and architectural
definitions. Continuous SE activities are ongoing, system–
level activities (e.g. architecture, environmental risk
management). These require not only substantial time, but
also the maintenance and evolution of long-term, persistent
artifacts that support development across multiple projects.
Taskable activities are generally specific to individual
projects (e.g. trade studies, interface management), but will
certainly draw on the persistent SE artifacts and knowledge.

By viewing the development and use of persistent
artifacts as key components of services provided to various
projects, SE can be opportunistic in applying its cross-project
view and understanding of the larger environment to specific

projects individually or in groups. It can also broker
information between individual projects where there may be
contractual or access barriers. When a system-wide issue or
external change occurs, SE can negotiate or unilaterally add
or modify tasks within affected projects to ensure that the
broader issue is handled in an effective and compatible way.
This is reminiscent of the agile management layer described
in the iteration management approach in [13], and the
approach envisioned can extend that concept throughout the
rapid response lifecycle and across the multiple projects.

SE performs its services in parallel to those activities in
the requesting project and then pushes the results to the
requestor as soon as available. This is aimed at supporting
the timeliness of projects, so that work can continue, even if
at a higher risk of rework, unless waiting for the results is
blocking all other work in the project (not a good thing).

Figure 4. Overview of SE as a Service concept

SE services require persistent artifacts and knowledge for

both requestor-specific and total system artifacts/
understanding. The quality of a requested service could be
pre-specified, specified as a parameter or input with service
request, or could be negotiated as a function of typical value
and time available to provide the service. In a KSS, SE
services can be thought of as a single activity. The value
function used to select the next request to be handled must be
designed to identify the highest cost of delay among the
queued requests in terms of the overall system value. This
allows SE to be a effective as possible in providing its
services across the enterprise. The function could be based
on several parameters that are attributes of individual
projects, individual requests, or system-wide activities.
Possibilities include the maturity of the requesting project,
lifecycle point of requesting project, criticality of the
requesting project, and value/cost of delay/priority/class of
service or other characteristics of the work impacted by the
service requested. The details will be critical to achieve
system wide benefits without impacting individual project
timeliness. Only through modeling is the impact of various
approaches to the value function determinable. In fact,
modeling should be able to help identify the sweet spot of
the amount and type of SE activity that produces the most
value with the lowest impact to quality. Statistical and other
measures will be needed to track the performance and
improve the value function in vivo.

Table 1 describes categories of services. A number of
services can be defined in each category, and if needed, such
definitions will be part of follow on research as the models
are evolved. It should be noted, however, that developing the
concept of SE services is outside the scope of the currently
funded work. The actual definitions of services will depend
on the context of the projects and the development
organizations. In our simulations, we have used the more
general value of work effort rather than detailing specific
task subject matter.

TABLE I. SYSTEMS ENGINEERING SERVICE CATEGORIES

Category Description Usage

Translating Capability
Objectives

Proxy for customer; support for
requirements management
activities

Continuous;
Taskable

Understanding
Systems and
Relationships

View across multiple projects;
Persistent memory across time
and teams

Continuous;
Taskable

Assessing
Performance Against
Capability Objectives

Validation of TPMs or other
performance requirements;
typical V&V type activities

Continuous;
Taskable

Developing and
Evolving Architecture

Providing design guidance and
supporting common architectural
patterns across multiple projects

Continuous;
Taskable

Monitoring and
Assessing Changes

Supporting flexibility and agility
by providing surveillance of the
external environment and
identifying issues and changes
that might affect projects

Continuous;
Taskable

Trade Studies And
Decision Support

Supporting system-informed
decision making by providing
independent, competent
analytical services to the projects

Taskable

IV. EXPECTED BENEFITS
A workshop was held at the Stevens Institute offices in

Washington, DC on January 27-28 2010 to discuss the
development of a 3-year roadmap for transforming systems
engineering. The meeting identified issues currently
observed in instances of the rapid-response environment
addressed in this paper. We believe, and are working to
show, that the following benefits are reasonable to expect
from the approach, and that they address a number of the
issues that were discussed in that meeting.

A. More effective integration and use of scarce systems
engineering resources
Using a KSS and applying a model of SE based on

continuous activities and taskable services is a value-based
way to prioritize the use of scarce SE resources across
multiple projects. The value function within the next-work
selection process can be tailored to provide efficient and
effective scheduling that maximizes the value provided by
the resource based on multiple, system-wide parameters.

Additionally, having service requests including time vs.
value parameters can help determine if the delay of other
service requests fulfillment is warranted by the current
service request. This is addressed further under the value
function discussion.

B. Flexibility and predictability
SE activities are generally designed for pre-specifiable,

deterministic (complete and traceable) requirements and
schedules. There is often an overdependence on unnecessary
formal ceremony and fairly rigid schedules. Using cadence
rather than schedule can provide efficient SE flow with
minimal planning. We believe that the CoS concept not only
handles expedite and date-certain conditions, but also
supports cross-kanban synchronization. Even though the
planning is dynamic and the selection of the next piece of
work to do asynchronous, we believe the use of a value-
based selection function, a time-cognizant service request,
customized Classes of Service, and a statistically controlled
cadence provide a sufficient level of predictability where
necessary.

C. Visibility and coordination across multiple projects
In highly concurrent engineering tasks, the KSS provides

a means of synchronizing activities across mutually
dependent teams by coordinating their activities through
changing value functions (task priority) according to the
degree of data completeness and maturity (risk of change). It
also provides an excellent way to show where tasks are and
the status of work-in-progress and queued or blocked work.

D. Low governance overhead
Implementing a KSS doesn’t require major changes in

the way work is accomplished or imply specific
organizational structures like other agile methods (e.g.
Scrum). Such systems can be set up in individual projects
and allowed to evolve into more effective governance over
time as the project and the organization as a whole
understand the best way to attain value from the practices.
Even the systems engineering resource scheduling can be
implemented with very little organizational impact.
Practitioners make most decisions using parameters set by
management (e.g. WIP limits) and their own understanding
of the needs. Issues are usually identifiable from walking the
visible representation of the flow status and so are made
clear to all who take part in the scheduling, including
management. Metrics are inherent to the system, clearly
identify problems, and track improvements. Most problems
tend to be self-correcting.

E. Increased project and system value delivered earlier
The core rationale of most lean and agile approaches is to

provide value to the customer as quickly as possible. In rapid
development environments this is particularly important. By
limiting WIP, more closely integrating the SE and project
engineering activities, and providing both specific project
and system-wide task value determination, the KSS provides
an intentional approach to achieving early value.

V. FUTURE WORK
This paper has described the development of a new

approach to managing systems engineering in an
environment where rapid response software development
projects incrementally evolve capabilities of existing systems
and/or systems of systems.

A second part of our research is the modeling and
simulation of this approach to determine whether it
represents a more effective way than traditional scheduling
and management paradigms. Those efforts are described in a
separate paper [19].

We have concurrently iterated the concept, the models,
and the simulations, hoping to determine if the approach
modeled in vitro is sufficiently likely to provide the
hypothesized benefits in an in vivo implementation. Using
the work so far, we will gather additional baseline data to
refine and calibrate the models and simulations, and are
already discussing instrumented pilots of the approach with a
number of companies in the US.

We are also looking to improve the model of the SE
services to include negotiation and the other human/social
aspects of the processes. We believe this is particularly
important in solving issues around implementing more
closely coupled systems, software, and stakeholder
development collaborations.

REFERENCES
[1] Boehm, Barry and Turner, Richard (2004). Balancing Agility and

Discipline: A Guide for the Perplexed. Boston, MA: Addison Wesley.
[2] Larman C. and Vodde, B. (2009). Scaling Lean & Agile

Development. Boston, MA: Addison Wesley.
[3] Poppendiek, Mary. (2007). Implementing Lean Software

Development: Boston, MA: Addison Wesley.
[4] Turner, Richard and Wade, J. (2011). Lean Systems Engineering

within System Design Activities, Proceedings of the 3rd Lean System
and Software Conference, May 2-6, 2011, Los Angeles, CA.

[5] NDIA-National Defense Industrial Association (2010). Top Systems
Engineering Issues In US Defense Industry. Systems Engineering
Division Task Group Report,
http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Docum
ents/Studies/Top%20SE%20Issues%202010%20Report%20v11%20F
INAL.pdf. September, 2010.

[6] Turner, Richard, Shull F., et al (2009a) “Evaluation of Systems
Engineering Methods, Processes and Tools on Department of Defense
and Intelligence Community Programs: Phase 1 Final Technical
Report,” Systems Engineering Research Center, SERC-2009-TR002,
September 2009.

[7] Turner, Richard, Shull F., et al (2009b) “Evaluation of Systems
Engineering Methods, Processes and Tools on Department of Defense
and Intelligence Community Programs: Phase 2 Final Technical
Report,” Systems Engineering Research Center, SERC-2010-TR004,
December 2009.

[8] Anderson, David. (2010). Kanban: Successful Evolutionary Change
for Your Technology Business. Sequim, WA: Blue Hole Press

[9] Reinertsen, Donald G. (2010). The Principles of Product
Development Flow. Redondo Beach, CA: Celeritas Publishing.

[10] Poppendieck, Mary, and Tom Poppendieck. (2003). Lean Software
Development: An Agile Toolkit. The Agile Software Development
Series. Boston: Addison-Wesley.

[11] Morgan, James M, and Jeffrey K Liker. (2006). The Toyota Product
Development System: Integrating People, Process, and Technology.
New York: Productivity Press.

[12] Goldratt, Eliyahu M., and Jeff Cox. (2004.) The Goal: a Process of
Ongoing Improvement. Great Barrington, MA: North River, 2004.

[13] Anderson et al., “Studying Lean-Kanban Approach Using Software
Process Simulation.” A. Sillitti et al. (Eds.): Agile Processes in
Software Engineering and Extreme Programming, Part 1, Lecture
Notes in Business Information Processing, Volume 77, Pages 12-26
2011.

[14] Heath, B. et al. (2009.) A survey of agent-based modeling practices
(January 1998 to July 2008). Journal of Artificial Societies and Social
Simulation. 12:4 2009.

[15] Borshchev, A., and A. Filippov. 2004. From system dynamics and
discrete event to practical agent based modeling: reasons, techniques,
tools. In Proceedings of the 22nd International Conference of the
System Dynamics Society, 25–29.

[16] M. Kellner, R. Madachy and D. Raffo, Software Process Simulation
Modeling: Why? What? How?, Journal of Systems and Software,
Spring 1999

[17] R. Madachy, Software Process Dynamics, Wiley-IEEE Press,
Hoboken, NJ, 2008

[18] Boehm, B.: Applying the Incremental Commitment Model to
Brownfield Systems Development, Proceedings, CSER 2009, April
2009.

[19] Turner, R., Madachy R., Ingold D., and Lane J., “Modeling Kanban
Processes in Systems Engineering,” submitted to International
Conference on Software and System Process 2012, 2012.

