
Department of Computer Science

Key UMass Amherst
Resources for SERC

Collaboration
Leon J. Osterweil (ljo@cs.umass.edu)
Lori A. Clarke (clarke@cs.umass.edu)

Lab. For Adv. SW Engineering Research
(LASER http://laser.cs.umass.edu)

Presentation to SERC Research Review
Malvern, PA

October 16, 2009

mailto:clarke@cs.umass.edu

2

Microprocess:
A “Horizonal Technology Cut”

3

Process is a central issue in system
engineering
 Goal: systems that are fast, agile, safe, effective,…
 Approach: processes for

• Building, analyzing, using, evolving, training, …
 Processes specify how systems are

• Developed, used, evolved, …
• As collaborations of people, software, devices

 (Development) processes are used to build systems
• Better systems come from better processes

 (Usage) processes guide how systems are wielded
• Better processes exploit systems better

 System improvement from Process Improvement

4

Example: Agile System Evolution
 How to quickly, surely enhance deployed systems?
 Improve their:

• Speed, functionality, usability, robustness
• Quickly, correctly, reliably

 Requires processes for:
• Coordinating development

• People, tools, management
• Assuring product qualities
• Deploying product
• Training users

 Requires being sure of these processes

5

A case in point--Coming up later in
this presentation
 Agile development (e.g. Scrum) can

• Speed systems to deployment
• Close system improvement loops fast

 But can it also
• Allow defects to creep in unnoticed?
• Render development vulnerable to poor developer

performance?
 Process Analysis:

• Can be used to identify single points of failure leading to
development hazards

• The basis for removing such defects
• Process Improvement => System improvement

6

Key UMass Capability:
Technology-Based Continuous Process Improvement

 Process is a central issue in system engineering
• Collaboration of people, software, devices, etc.

 Process Improvement is a central goal
 UMass concepts, tools, and technologies support

process:
• Definition
• Analysis/evaluation
• Education
• Performance/execution/simulation
• Evolution

7

Our approach is based upon

MICROPROCESS
research

8

Process as Object

Process

Outputs
Artifacts
Effects on

the world

Resources:
People
Money
Tools
Time

Input Artifacts

Other Behaviors
Money used
Time spent
Errors committed

9

Macro-Process Focus

Process

Resources:
People
Money
Tools
Time

Input Artifacts

Common approaches:
CMMI, ISO 9000, Six Sigma

Outputs
Artifacts
Effects on

the world

Other Behaviors
Money used
Time spent
Errors committed

10

Micro-Process Focus

Process

Resources:
People
Money
Tools
Time

Input Artifacts
Outputs

Artifacts
Effects on

the world

Other Behaviors
Money used
Time spent
Errors committedNeeded approach: Define, analyze

Automate, precise process definitions

11

Bridging Micro- and Macro-

 Use details of process model to predict how
system attributes and behaviors are produced

 Suggest changes, predict their effects
 Validate changes before they are made

Each has interests in all of these
Each knows it needs the other’s approach

12

What we learn from analogies to
other disciplines (e.g. medicine)

 Macro- approach comes first
 Limited success in engineering
 Micro- approach/theory follows
 Facilitates more effective engineering

• Improved predictability
• Reduced uncertainty
• Greater cost effectiveness
• Better understanding of limitations
• Fewer surprises

We are here (?)

13

Time for SERC to take the lead in showing how:

Microprocess technology can transform
System Engineering

14

The Microprocess Vision
 Define processes with a precisely defined

executable language
 Analyze processes for defects

• And fix them to improve them
 Execute, simulate the defined processes

• To provide user Guidance
 Use them as the basis for education and

workforce development

15

The Microprocess Vision
 Define processes with a precisely defined

executable language
 Analyze processes for defects

• And fix them to improve them
 Execute, simulate the defined processes

• To provide user Guidance
 Use them as the basis for education and

workforce development
Apply this to the many processes implied
in the SERC Research Strategy

16

Little-JIL process language features

 Blends proactive and reactive control
 Coordinates human and automated agents

• Without favoring either

 Emphasizes exception specification, management
 Facilities for abstraction, scoping, hierarchy
 Artifact flow, resource utilization integrated
 Concurrency, synchronization with message-passing
 Articulate specification of resources
 Semantics for aborting activities
 Pre/post condition constructs
 Facilities for human choice

There are
many more

17

Little-JIL: A Real Language with
Precise Semantics

 Process definition is a hierarchical decomposition
 Think of steps as procedure invocations

• They define scopes
• Copy and restore argument semantics

 Encourages use of abstraction
• Eg. subprocess reuse

18

Little-JIL: A Real Language with
Precise Semantics

 Process definition is a hierarchical decomposition
 Think of steps as procedure invocations

• They define scopes
• Copy and restore argument semantics

 Encourages use of abstraction
• Eg. subprocess reuse

A key feature in distinguishing this from
less formal languages (e.g. workflow)

19

“Step” is the central Little-JIL abstraction

TheStepName

Interface Badge
(parameters, resources, agent)

Prerequisite Badge Postrequisite Badge

Substep sequencing
Handlers

X

Artifact
flows

Exception type

continuation

20

Top level of Little-JIL
Scrum process definition

21

Top level of Little-JIL
Scrum process definition

creates
“sprint backlog”

from
“product backlog”

22

Top level of Little-JIL
Scrum process definition

creates
“sprint backlog”

from
“product backlog”

Executes tasks
From the

“sprint backlog”

23

Top level of Little-JIL
Scrum process definition

creates
“sprint backlog”

from
“product backlog”

Executes tasks
From the

“sprint backlog”

Reviews sprint
and updates

“product backlog”

24

After the task
is completed,

perform review
If the review fails,
rework the task

Elaboration of “Execute Tasks” step

25

The Basis for Engineering
 Such definitions can then be the subjects for

sound analyses
 They can be executed

• To provide user guidance
 They can be support education and training
 They form the basis for disciplined improvement

26

A Continuous Process Improvement Environment

–z

Order Test(s)(part of perform
Blood Specimen Labeling process)
To perform this step theProvider
must have the patient-name.
The Provider should firstorder
test(s) on computer, and then order
test(s) on patient chart.
During any of these steps, if the
required resources are not
available, order test(s) is
considered to have failed.

Finite-State
Verification

Fault-Tree
Analysis

Discrete-Event
Simulation

Role-Based
Analysis

Multiple derived
representations

Resource
Specification

And Management Process Improvement
decisions based on

technology assessment

Collection of analysis
capabilities:

error detection and security
analysis

Process, property, resource
definition languages

with rigorous semantics

27

Finite-State Verification

PROPEL
Property
Generator

System
Translator

FLAVERS
Reasoning
Engine

Little-JIL
Process
Definition

Process
Model

Property Property
Representation

Property Holds on All Paths
Through the Model

Property Does Not Hold:
Counterexample

Process
Engineer

Domain
Expert

28

After the task
is completed,

perform review
If the review fails,
rework the task

Finite State Verification of Properties

Process property: Task
must be reworked if the
review fails

29

Using Propel to define property “Task
must be reworked if the review fails”

30

Corresponding (Disciplined)
English Description of Property

QuickTime™ and a
 decompressor

are needed to see this picture.

31

Task is performed
Review fails

Task is reworked

Review fails again

FLAVERS-generated trace showing how
the property can be violated

Suggesting a correction to the process-
technology-driven process Improvement

32

Fault Tree Analysis (FTA)
 A well accepted and widely practiced

hazard analysis technique
 Systematically identifies and reasons

about all possible events that could lead to
a given hazard
• Create fault tree for a hazard
• Analyze each fault tree

 Analysis results can be used to improve
the process => process improvement

33

Fault Tree Automatically generated
from Little-JIL

Hazard: Artifact
“sprintbacklog” from
“Sprint” is wrong

34

Minimal Cut Sets Can Be Generated
Automatically

Single Point
of Failure

35

Single point
of failure!

Location of Single Point of Failure

36

Discrete-Event Simulation
 Use the Little-JIL process models, combined

with a resource manager to drive discrete-
event simulation
• Evaluate alternative resource allocations

• More architects, more programmers, or more testers

37

Agenda
Manager

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
Resource
Manager

Who
does it?

Agendas

Parameter
Manager

What is it
done to?

Which step
next?

Non-Human Agents

Step
Sequencer

Outputs

Agenda Item

Little JIL Interpreter Architecture

Human Agents

38

Agenda
Manager

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
Resource
Manager

Who
does it?

Agendas

Simulated Human Agents

Parameter
Manager

What is it
done to?

Which step
next?

Non-Simulated Simulated
Non-Human Agents

Agent
Behaviors

Step
Sequencer

Event
Arrivals

Outputs

Simulation Results

User

Arrival
Distribution

Specification

TimeLine

Agent
Behaviors
Specification

Events

Next
Event

Agenda Item

Little JIL Simulator Architecture

39

Life Cycle Process Engineering : An
engineering discipline applied to the domain of processes

 Integrated approach to process
• Definition
• Analysis
• Simulation
• Execution
• Education
• Improvement

40

Toolset Status

 Little-JIL language 1.5 is defined
 LASER currently distributes

• Visual JIL graphical editor
• Propel property specification system
• FLAVERS finite state verification system
• Fault tree generator and analyzers

 Working, but not distributed yet
• Juliette runtime execution system
• ROMEO resource manager
• JSim finite state simulation system

41

Toolset Integrated through Eclipse

42

A SERC-relevant Application:
Agile/Adaptive Software Development

 Applying this approach to processes for
agile/adaptive system development

 Some examples can be drawn from Agile Methods,
Extreme Programming

 Case in point: Scrum-oriented development
• Define Scrum
• Analyze Scrum

• Identify and fix weaknesses
• Train and educate
• Provide automated guidance in doing Scrum

43

Some Research Areas
 What semantic features should a microprocess

definition language have?
 How to specify its semantics?
 What analysis approaches should be explored?

• What can be learned from each
 What is the architecture of a microprocess

execution system?
• What components?
• How integrated?

 Software artifact provenance
• What is needed?
• How to provide it?

44

Questions
and
Discussion

45

Backup
Slides

46

Four parts to a Little-JIL Process
 Coordination diagram
 Artifact space
 Resource repository
 Agents

47

An Articulate Process Can Help
Answer Questions Like These

Requirements

Low-Level
Design

Code

Test

High-Level
Design

Where does output go?

What causes this rework?

What portion of
activity should be
done?

How do we break this cycle?

What to do when reviews fail?

48

Software Development

Requirements

High-Level Design Low-Level Design

Coding

High-Level Process

49

Requirements

Develop Rqmt Element

Declare and Define Rqmt

Define Rqmt ElementDeclare Rqmt Element

Develop Rqmt Element

~ Rqmt OK

X

+

Rqmt OK

=

1

2

3

4

5

10

9

6

8

7

Requirements
Process
Emphasizing
Rework

50

Requirements

Develop Rqmt Element

Declare and Define Rqmt

Define Rqmt ElementDeclare Rqmt Element

Develop Rqmt Element

~ Rqmt OK
In: Rqmt Spec,

(Rqmt History, Rqmt Rpt)

X

+

Rqmt OK
In: Rqmt Elt
Out: Rqmt Rpt

In/Out: Rqmt Spec, Rqmt History
Out: Rqmt Elt

In/Out: Rqmt Spec, Rqmt History
Out: {Rqmt Elt} <- ({Rqmt Elt} U Rqmt Elt)

In/Out: Rqmt Spec, {Rqmt Elt}

=

51

High-Level Design

Declare and Define HLDesign Elements

Declare HLDesign Element

Requirements

~ A Rqmt OK

X

HLDesign OK

Define HLDesign Elements

High-Level Design

~ HLD OKDeclare HLDesign Elements

+

1

2

3

4

5

10

6

8

7

Develop Rqmt Element

~ Rqmts OK9

52

Coding

Develop Code Modules

Define Module Interfaces

Code All Modules

Define A Module Interface

=
+

X
~Rqmts OK

~HLD OK

Low-Level Design

Requirements

High-Level Design

Coding

Develop Rqmt
Element

…

…

Interface
OK

Code
OK

~LLD OK

~Code OK

~ A Rqmt OK

53

FSV Using Propel and FLAVERS

	Key UMass Amherst Resources for SERC Collaboration
	Microprocess:� A “Horizonal Technology Cut”
	Process is a central issue in system engineering
	Example: Agile System Evolution
	A case in point--Coming up later in this presentation
	Key UMass Capability:�Technology-Based Continuous Process Improvement
	Our approach is based upon ��MICROPROCESS�research
	Process as Object
	Macro-Process Focus
	Micro-Process Focus
	Bridging Micro- and Macro-
	What we learn from analogies to�other disciplines (e.g. medicine)
	Time for SERC to take the lead in showing how: �
	The Microprocess Vision
	The Microprocess Vision
	Little-JIL process language features
	Little-JIL: A Real Language with�Precise Semantics
	Little-JIL: A Real Language with �Precise Semantics
	“Step” is the central Little-JIL abstraction
	Top level of Little-JIL�Scrum process definition
	Top level of Little-JIL�Scrum process definition
	Top level of Little-JIL�Scrum process definition
	Top level of Little-JIL�Scrum process definition
	Elaboration of “Execute Tasks” step
	The Basis for Engineering
	A Continuous Process Improvement Environment
	Finite-State Verification
	Finite State Verification of Properties
	Using Propel to define property “Task must be reworked if the review fails”
	Corresponding (Disciplined) English Description of Property
	FLAVERS-generated trace showing how the property can be violated
	Fault Tree Analysis (FTA)
	Fault Tree Automatically generated from Little-JIL
	Minimal Cut Sets Can Be Generated Automatically
	Location of Single Point of Failure
	Discrete-Event Simulation
	Little JIL Interpreter Architecture
	Little JIL Simulator Architecture
	Life Cycle Process Engineering : An �engineering discipline applied to the domain of processes
	Toolset Status
	Toolset Integrated through Eclipse
	A SERC-relevant Application:�Agile/Adaptive Software Development
	Some Research Areas
	Questions�and�Discussion
	Backup �Slides
	Four parts to a Little-JIL Process
	An Articulate Process Can Help Answer Questions Like These
	High-Level Process
	Requirements �Process �Emphasizing �Rework
	Slide Number 50
	Slide Number 51
	Slide Number 52
	FSV Using Propel and FLAVERS

