



#### **COMPLEX ENTERPRISE SYSTEMS**

#### By

William B. Rouse & Michael J. Pennock

5<sup>th</sup> Annual SERC Sponsor Research Review February 25, 2014 Georgetown University Hotel and Conference Center Washington, DC

www.sercuarc.org



#### **Overview**

- Complex Enterprise Systems
- Overall Methodology
- Thinking in Terms of Phenomena
- Abstraction, Aggregation & Representation
- Methodological Support
- Value of Immersion
- Example of Urban Resilience
- Fundamental Issues
- Summary



# **Complex Enterprise Systems**

- Complex Public-Private Systems Laced with Behavioral and Social Phenomena in the Context of Physical and Organizational Systems, Both Natural and Designed
- Examples Being Pursued
  - Deterring or Identifying Counterfeit Parts
  - —Traffic Control Via Congestion Pricing
  - —Impacts of Investments in Healthcare Delivery
  - —Human Responses and Urban Resilience

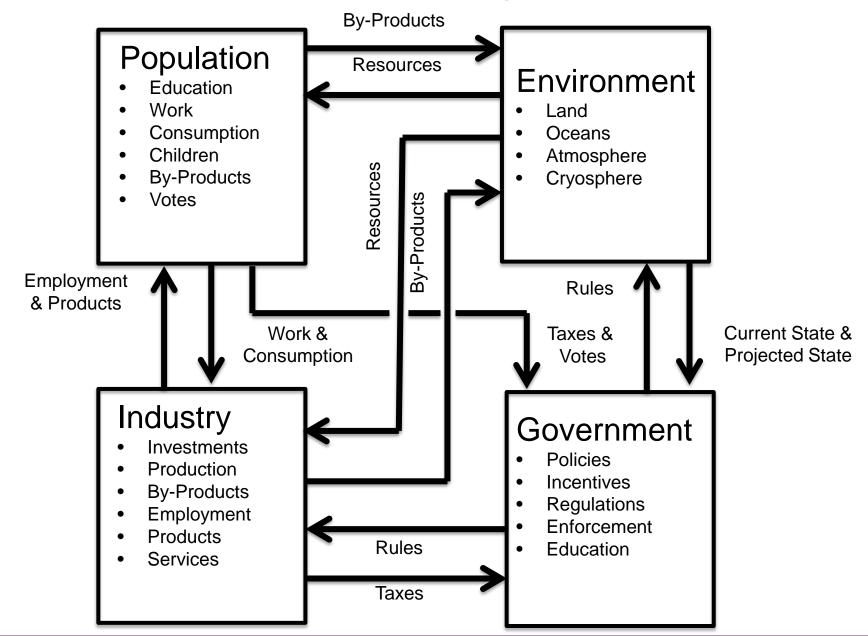


# **Archetypal Enterprises**

| Levels of<br>Phenomena       | Counterfeit<br>Parts                                           | Congestion<br>Pricing                                                            | Healthcare<br>Delivery                                                                | Urban<br>Resilience                                                        |
|------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Historical<br>Narrative      | Evolution of defense ecosystem in terms of decision processes  | Evolution of transportation ecosystem in terms of technologies & expectations    | Evolution of healthcare ecosystem in terms of ends supported and means provided       | Evolution of urban ecosystem in terms of social development                |
| Ecosystem<br>Characteristics | Defense ecosystem –<br>norms, values and<br>supplier economics | Transportation ecosystem  – norms, values & expectations of convenience          | Healthcare ecosystem –<br>norms, values and<br>resource competition                   | Urban ecosystem –<br>norms, values and<br>social resilience                |
| Organizations & Processes    | System assembly and deployment networks and controls           | Transportation infrastructure networks and flows, and control systems            | Provider, payer and supplier organizations – investments, capacities, flows, outcomes | Urban infrastructure<br>networks and flows -<br>- water, energy,<br>people |
| People or Basic<br>Elements  | Flow of parts in supply chain to assembly and deployment       | Individual vehicles and driver decision making in response to flows and controls | People's health and disease incidence, progression and treatment                      | Peoples' evolving perceptions, expectations and decisions                  |



# **Overall Methodology**


- 1. Decide on the Central Questions of Interest
- 2. Define Key Phenomena Underlying These Questions
- 3. Develop One or More Visualizations of Relationships Among Phenomena
- 4. Determine Key Tradeoffs That Appear to Warrant Deeper Exploration
- 5. Identify Alternative Representations of These Phenomena
- 6. Assess the Ability to Connect Alternative Representations
- 7. Determine a Consistent Set of Assumptions
- 8. Identify Data Sets to Support Parameterization
- 9. Program and Verify Computational Instantiations
- 10. Validate Model Predictions, at Least Against Baseline Data



### Thinking in Terms of Phenomena

- Rule Setting
  - Incentives Behaviors Rewarded
  - Inhibitions Behaviors Penalized
- Resource Allocation
  - Money, Time, Capacities
  - Attention -- Displays, Signals, Routes,
- State Transitions
  - Position, Velocity, Acceleration
  - Solid, Liquid, Gas
  - Incidence, Progression, Queues
- Flow of Resources
  - People, Materials, Vehicles
  - Energy, Information
  - Laminar, Turbulent, Congested
- Task Performance
  - Execution, Monitoring, Control
  - Detection, Diagnosis, Compensation

# Earth as a System





# **Abstraction Hierarchy**

- Functional Purpose
  - Objectives, constraints
- Abstract Purpose
  - —Causal structure, mass, energy information flow
- Generalized Functions
  - —Processes, feedback loops, heat & mass transfer
- Physical Functions
  - —Electrical, mechanical, chemical processes
- Physical Form
  - —Appearance, anatomy, location



# **Aggregation Hierarchy**

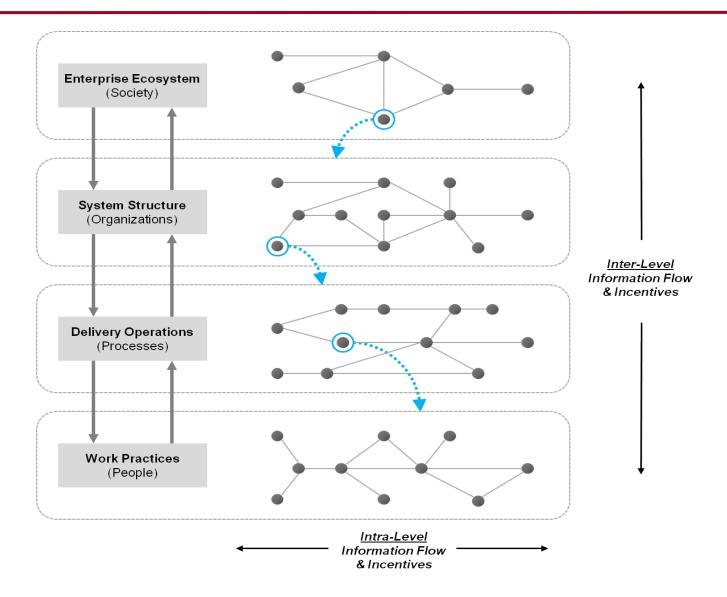
- Systems of Systems
- ,

Subsystems

Systems

- Assemblies
- Components
- Parts

- All People
- All Patients
- Populations of Patients
- Cohorts of Patients
- Individual Patients




# **Abstraction & Aggregation**

|                      | Level of Aggregation                        |                                                           |  |
|----------------------|---------------------------------------------|-----------------------------------------------------------|--|
| Level of Abstraction | Highly<br>Disaggregated                     | Highly<br>Aggregated                                      |  |
| Ecosystem            | Each regulator Each payer                   | Government<br>All payers                                  |  |
| Organizations        | Each provider Each clinician practice       | All providers All clinician practices                     |  |
| Processes            | Each operating room Each imaging capability | Operating room capacity Imaging capacity                  |  |
| People               | Individual clinicians Individual patients   | All clinicians in a specialty Cohorts of similar patients |  |



### **Multi-Level Models**





# Representations

| Level         | Phenomena                         | Models                |
|---------------|-----------------------------------|-----------------------|
| Ecosystem     | GDP, Supply/Demand, Policy        | Macroeconomic         |
|               | Economic Cycles                   | System Dynamics       |
|               | Intra-Firm Relations, Competition | Network Models        |
| Organizations | Profit Maximization               | Microeconomic         |
|               | Competition                       | Game Theory           |
|               | Investment                        | DCF, Options          |
| Processes     | People, Material Flow             | Discrete-Event Models |
|               | Process Efficiency                | Learning Models       |
|               | Workflow                          | Network Models        |
| People        | Consumer Behavior                 | Agent-Based Models    |
|               | Risk Aversion                     | Utility Models        |
|               | Perception Progression            | Markov, Bayes Models  |



# **Methodological Support**

- An interactive environment that supports the set of nominal steps outlined above.
  - —Steps are "nominal" in that users are not required to follow them.
  - Advice is provided in terms of explanations of each step and recommendations for methods and tools that might be of use.
- Compilations of physical, organizational, economic and political phenomena are available
  - Includes standard representations of these phenomena, in terms of equations, curves, surfaces, etc.
  - —Advice is provided in terms of variable definitions, units of measure, etc., as well typical approximations, corrections, etc.
  - Advice is provided on how to meaningfully connect different representations of phenomena.



### Support – Cont.

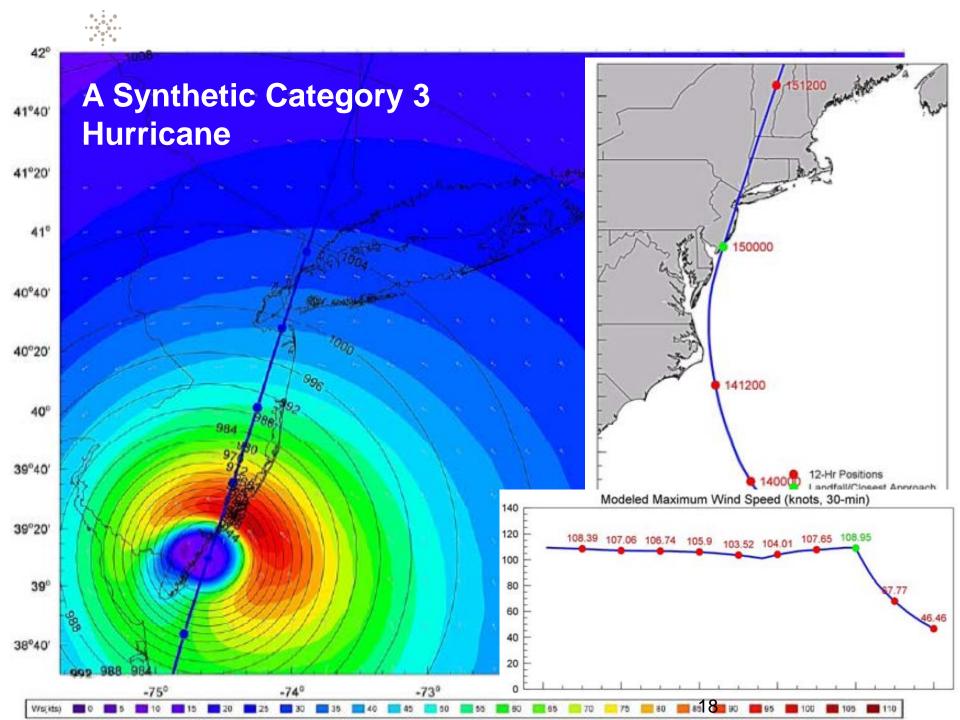
- Visualization tools are available, including block diagrams, IDEF, influence diagrams, and systemograms.
- Software tools for computational representations are recommended
  - —Emphasis is on commercial off-the-shelf platforms that allow input from and export to, for example, Microsoft Excel and Matlab.
  - Examples include AnyLogic, NetLogo, Repast, Simio, Stella, and Vensim.
- Support is not embodied in a monolithic software application.
- Framework operates as fairly slim application that assumes users have access to rich and varied toolsets elsewhere on their desktops.
  - —Support provides structured guidance on how to best use this toolset.
- Model development occurs within the confines of one or more desktops or laptops.
- Capabilities to export interactive visualizations to much more immersive simulation settings.



#### Value of Immersion

- Many of the phenomena in our critical public-private systems are very complex and becoming more so.
- Many of the key stakeholders in these systems are not technically sophisticated yet they have enormous influence on outcomes.
- These stakeholders can be engaged and influenced by being immersed in the complexity of their domain.
- The *Immersion Lab* attracts key stakeholders and sponsors many report that they did not realize what they experienced was possible.





### **Virtual Antarctica**

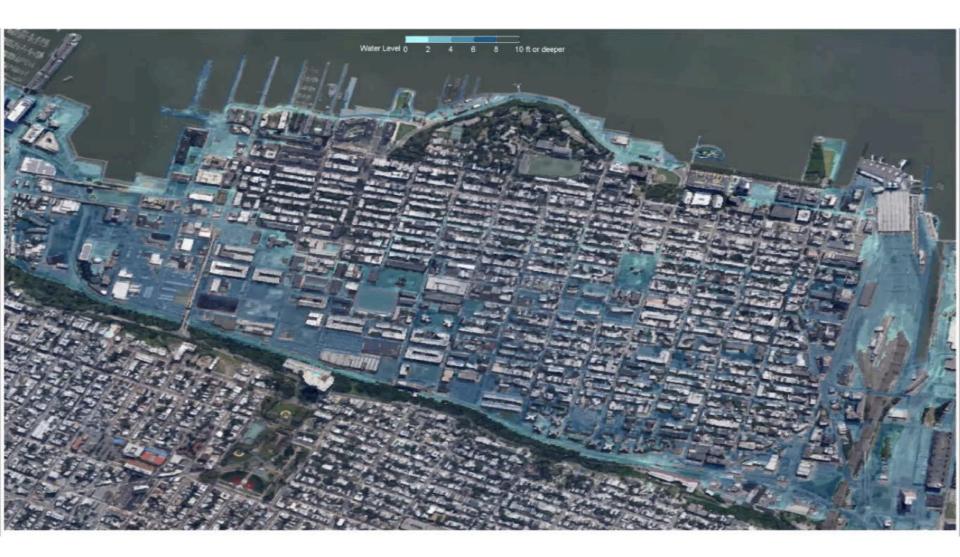




# **New York City & Long Island**








# Mantoloking, NJ





# Hoboken, NJ





### **Research Questions**

- Where will the water be?
  - —What streets? What depth? When?
- How will the urban infrastructure react?
  - —Transportation, energy, food, water, etc.?
- What will be people's perceptions, expectations, and intentions?
  - —Government decision makers
  - —Industry decision makers
  - Population in general



### People's Questions

- At First
  - —What is happening?
  - —What is likely to happen?
  - —What do others think?
- Somewhat Later
  - —Will we have power, transportation?
  - —Will we have food and water?
  - —What do others think?
- Further On
  - —Where should we go?
  - —How can we get there?
  - —What are others doing?



#### **Fundamental Issues**

- Creating valid and useful combinations of
  - —Partial differential equation models of water flow
  - Network models of urban infrastructures
  - Agent-based models of population response
- Accounting for information sharing among members of the population
- Incorporating real-time sensing, including tweets, to update predictions as situations evolve
- Creating immersive decision support systems for government and industry decision makers



# **Combining Models**

- Combining multiple, specialized models would seem to be an ideal solution for analyzing complex enterprise systems
- However, this implicitly creates overlapping representations of the same underlying phenomena
- Overlaps create conflicts and feedback loops that can be difficult or impossible to manage
  - —These only occur in models, not the real world



# **Overlaps Can Be Subtle**

- Some overlaps are obvious
  - Drivers make decisions based on the perceived traffic flow and the traffic flow is created by the decisions of drivers
- But others can be more subtle
  - A classic model for asset price may be inconsistent with an agent-based model of investor behavior
- Capturing the complexities of enterprise systems often requires more models, hence, more overlaps



# **Example: Pilot Worload**

- An analyst wants to develop a simulation by composing "off the shelf" models to estimate aircraft cockpit workload
- The analyst has two models:
  - A discrete event simulation that models the arrival of in-flight events, including emergencies
  - A differential equation based simulation that models the flight response of the aircraft
- If the two models are compliant with well-defined simulation standards, the analyst should be able to combine the two according to established rules



# **Example: Pilot Workload**

- After combining the simulations, the analyst discovers that the flight response model is for a commercial aircraft and the in-flight events model is for a military fighter aircraft
- Obviously this is not a valid combination (and is exaggerated to make the point) – "events" in a fighter are quite different from "events" in a commercial transport
- But what if the models were for two different variants of commercial transports? Would that be close enough?







# **Addressing Overlaps**

- Overlaps can be addressed by partitioning the problem into manageable pieces
  - Using a low resolution map for traveling cross country and a high resolution map for navigating city streets
- Partitions must achieve complete separation
  - -Compatible data exchanges are not enough
- Some incomplete partitions may be addressed by trading accuracy versus separability
  - A high fidelity model of engine performance used to generate parametric functions as inputs to other models



# Summary

- Complex Enterprise Systems
- Overall Methodology
- Thinking in Terms of Phenomena
- Abstraction, Aggregation & Representation
- Methodological Support
- Value of Immersion
- Example of Urban Resilience
- Fundamental Issues