Reinforcement learning for autonomous and novel behavior in OneSAF

Potential for new TTPs, technology evaluation, and Requirements definitions

Eric Kelly, Ph.D., Senior Deep Learning Architect
Kim Pevey, Ph.D., Research Software Engineer
Dillon Roach, Ph.D., Data Science Engineer

UNCLASSIFIED/Distribution Statement A: Approved For Public Release; Distribution Is Unlimited.
Reinforcement Learning (RL) can enhance OneSAF by adding autonomy to simulation entities

Autonomous entities create potential for:

- Generating new battlefield strategies with minimal human bias
- Helping warfighters learn in a much more creative, stimulating, and instructive environment
- Expanding how the military engages in future conflicts
- Allowing experimentation and evaluation of new technologies
- Informing Requirements definitions for the future force
One Semi-automated Forces (OneSAF)

A simulation tool for modeling real-world representations of combat and non-combat operations

- Used for design, experimentation, analysis, and training, including human-in-the-loop scenarios
- Physics-based (realistic) environment
- Uses behavior models to control entities
- Behaviors are rule-based and customizable

Goal: add RL capability to enhance entity behaviors

https://ict.usc.edu/prototypes/onesaf/#gallery-1
Advantages of RL over rule-based models

- **Complexity**: Complex situations require more rules than humans can derive
- **Adaptation**: Decisions are made even if situation is new
- **Novelty**: Thorough exploration allows new solutions to be found
RL is a type of Machine Learning (ML)

<table>
<thead>
<tr>
<th>Supervised Learning (SL)</th>
<th>Unsupervised Learning (UL)</th>
<th>Reinforcement Learning (RL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Constraints</td>
<td>Existing Dataset</td>
<td>Create Data via Exploration</td>
</tr>
<tr>
<td>Training Data</td>
<td>Labeled (tagged)</td>
<td>Unlabeled</td>
</tr>
<tr>
<td>Common Objectives</td>
<td>Classification, Regression</td>
<td>Labeling, Segmentation, Clustering</td>
</tr>
</tbody>
</table>

[Diagram showing classification, regression, decision/action sequences]
RL Is an Exploratory Learning Approach

Learns from potentially infinite examples in environment (complex problem)

Result is a policy for decision making that optimizes expected reward

https://deepmind.com/blog/article/generally-capable-agents-emerge-from-open-ended-play

UNCLASSIFIED//Distribution Statement A: Approved For Public Release; Distribution Is Unlimited.
Reinforcement Learning: Applications

- Manufacturing: Robotics, computer chip design
- Warehouse process efficiency
- Data center cooling and control (Google)
- Autonomous navigation of vehicles
- Healthcare Treatment Policy
- Trading and Bidding strategies

High level competitive games (DoTA:2, Starcraft2)
- OpenAI’s ‘Five’ beats human world-champion team in 5v5 match
- AlphaGo/lee/Zero defeat world’s top players
RL in Aircraft Autonomy: Air combat

Complex flight behavior (AI is pilot)

F-16 drone wins ‘Human vs Artificial Intelligence’ aerial dogfight
https://ukdefencejournal.org.uk/f-16-drone-wins-human-
RL-SAF: RL for OneSAF

UNCLASSIFIED

RL Model (TD3) -> RL Algorithm -> API

mongodb

UNCLASSIFIED//Distribution Statement A: Approved For Public Release; Distribution Is Unlimited.
RL-SAF API (beyond RL)

- Controls OneSAF via Python
- Communicates with OneSAF via REST endpoints
- Can run sequences of tasks with or without user interaction
 - Examples
 - Load a scenario via scene file/template
 - Move and orient entities via magic commands
 - Initialize, run, and reset a scenario
 - Get/Set entity and simulation properties
- Independent of RL algorithm
RL Algorithm and TD3

- Makes use of OneSAF commands to move and fire
 - More efficient learning for shorter training runs
- Uses OpenAI Gym framework and TD3 algorithm
 - TD3 works well for continuous action spaces (infinite solutions)
- Observation space (available to RL actor/model)
 - RL actor: speed, heading, distance to destination, heading to destination, health, distance to nearby buildings, whether fire command is queued, simulation time
 - Enemy: speed, heading, distance, bearing, health
- Action space (available to RL actor/model)
 - RL actor: forward distance, forward direction, fire
- Reward (sum of components)
 - Time/speed, distance to destination, health, enemy health, out of bounds penalty
Simulation scenario:
- RL Actor (blue) starts in random locations
- Goal is to kill enemy (red) and occupy town (pink cross)
- Enemy follows patrol loop through town
- Both actors may fire at any time

(First animation will show a different scenario)

Results: What to look for in next few slides
- Movement and navigation
- Firing ability
- Novel solutions: improvement over rule-based behavior models
Movement/Navigation: smooth and efficient

Firing ability: Blue does not engage Red

Novel behavior: Blue avoids road to hide from Red

(Alternate scenario)
- **Movement/Navigation:** Blue navigates in urban environment
- **Firing ability:** Blue does not fire even when conditions are right
- **Novel behavior:** Blue avoids damage while attempting to occupy town
- **Movement/Navigation:**
 Finds center of town and high point for firing

- **Firing ability:**
 Blue acquires Red then fires from safe distance (compensates for poor firing performance)

- **Novel behavior:**
 Fires from distance, potentially taking advantage of Red’s firing accuracy at long range
● **Movement/Navigation:**
 Blue moves along tree line behind buildings

● **Firing ability:**
 Blue should fire earlier

● **Novel behavior:**
 Blue hides and waits for Red to stop patrolling, then fires
Current RL model state

<table>
<thead>
<tr>
<th>Topic</th>
<th>Result</th>
<th>Explanation / Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement and navigation</td>
<td>⭐⭐⭐⭐</td>
<td>● Fast and efficient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Easily avoids obstacles/threats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Goes to destination</td>
</tr>
<tr>
<td>Firing ability</td>
<td>⭐⭐⭐</td>
<td>● Effective when conditions are optimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Rarely fires immediately</td>
</tr>
<tr>
<td>Novel solutions</td>
<td>⭐⭐⭐⭐</td>
<td>● Learned to achieve goal in realistic situation (loss of firing capability)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Hides to avoid enemy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Waits for enemy to stop, then fires</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Acquires enemy, then moves far away to fire</td>
</tr>
<tr>
<td>Improvement over rule-based behavior models</td>
<td>⭐⭐⭐⭐</td>
<td>● Uses best capabilities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Adapts to situation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Learns enemy behavior (without human input)</td>
</tr>
</tbody>
</table>

Easy learning
- Abundant feedback (every simulation step)

Difficult learning
- Delayed firing chain feedback (need more observations)
- Infrequent enemy engagement (need more directed training)

Few constraints and strong adaptation
- Essentially no rules (find a way to win)
- Lack of firing capability is partial driver

Few constraints
- Essentially no rules (find a way to win)
- Rule-based firing is currently better, but with improvements, RL firing should excel
RL-SAF enhances OneSAF by adding autonomy to simulation entities

Autonomous entities create potential for:

- New battlefield strategies
- Helping warfighters learn
- Expanding how the military engages in future conflicts
- Allowing testing and evaluation of new technologies
- Informing Requirements definitions for the future force

High-level explanation of reinforcement learning: https://quansight.com/post/exploring-reinforcement-learning

Practical RL Short Course (deeper dive and model building): https://github.com/Quansight/Practical-RL