Outline

• Introduction
• Machine Learning Natural Language Processing Application
 – The Application – Look and Feel
 – What happen behind the scenes?
• Benefits
• Lessons Learned and Next Steps
Introduction

• NASA’s Air Traffic Management-Exploration (ATM-X) Urban Air Mobility (UAM) Subproject is conducting research that evolves UAM airspace towards a highly automated and operationally flexible system of the future.
 – See https://www.nasa.gov/uam-overview/ for more information

• The complexity of UAM airspace evolution requires a plan to effectively organize, integrate, and communicate NASA’s research and development.
 – This planning tool is called the UAM airspace research roadmap.
 – Implemented through Model-Based Systems Engineering (MBSE) methodology
 – Leveraging machine learning natural language processing (ML NLP, or just NLP).
Systems Models for Roadmap Development

- Meta-model definition showing structure and high-level dependencies within and between models.
- Dependencies between models are through requirement traceability.
- **High cognitive demand** to perform Roadmap’s requirement discovery and analysis to identify its rationale, reference sources, and dependencies among requirements.
- This challenge can be overcome by the application of **ML NLP methodology**.

CNS = Communication, Navigation, and Surveillance
UML = UAM Maturity Level
NASA has been transforming our R&D, system engineering, and project management processes to fully leverage evolving digital technologies:

- to view digitized records virtually across diverse organizations, thus improving design efficiency, collaboration, and safety
- to streamline our processes to take advantage of new digital tools to optimize process flows.

Perfect opportunity to infuse a new way in the requirement discovery and analysis.

Developed an application which is an intelligent data interface that rigorously searches a corpus of UAM technical manuscripts, FAA regulations, etc. in near real-time:

- 20 pdf documents, each ranging from 20 to a few hundred pages long.
The Application – Look and Feel

1. UAM Model is selected by the user

2. User selects Excel cells with UAM requirement data

3. Relevant UAM regulations, ConOps, and other UAM documents are displayed to the user
What Happen Behind-the-Scenes?

• **PyInstaller package**
 – No need for the user to install a Python environment in order to run our application.
 – Allows for the seamless integration of Python Machine Learning capabilities directly into Microsoft Excel.

• **Textract, PdfMiner, Xlrd packages**
 – Supports the extraction of the following data types for training:
 • .docx | .pptx | .txt
 • .pdf
 • .xlsx and .xls

• **PyDoE package**
 – Python experimental design package.
 – Used to generate a matrix for the Application (called Lessons Learned Bot or LLB) auto-train functionality.
What Happen Behind-the-Scenes?

• Doc2Vec package from GenSim
 – A NLP Machine Learning approach for finding related documents using their corresponding vector representations.
 – Based on a single-layer neural network model
 • Input -> Hidden Layer -> Output with a Softmax Classifier.
 – A total of 19 hyper-parameters for training. Examples are:
 • Vector Size - Size of Neural Network Input / Output Nodes, or the dimensionality of the feature vectors
 • Window - Sliding window size of words in a sentence to be considered as a context
 • Min. Count - Minimum threshold frequency (count) of words to be discarded during the pre-processing of the training dataset. (Less frequent words)
 • Sample - Threshold value to compute the probability of words with high frequency (with less added information) that will be discarded. (Too frequent words)
What Happen Behind-the-Scenes?

- Auto Training vs. Set Default Parameters (or Out-of-the-Box)
 - Two user training modes built into the LLB.
 - Auto Train -> Model generator runs through various hyper-parameter setting scenarios, evaluates the generated model, and selects the best one. Produces best model but is computationally intensive.
 - Out-of-the-Box -> A set of static default parameters is used to train the models. These parameters were verified in the literature to work adequately over a wide range of models but may not perform as good as Auto Train does. Only requires 1 training run vs. multiple runs with Auto Train, therefore it is much faster.
Document Recommendation Process

Excel Spreadsheet

Display Relevant UAM documents to the LLB task pane

Doc2Vec Processing (Python ML component)

Clean input text

Infer vector from input text

Return UAM documents with the highest similarity

Compare input text to UAM documents in dataset

Office VSTO Add-in Processing

Get abstracts for relevant documents

Format the relevant UAM documents

Text from user selected cell

Relevant UAM documents

*VSTO = Visual Studio Tools for Office
Benefits

Today’s practice
– Systems engineers (SE) performing reviews of this corpus.
– SEs identify requirement’s rationale and references.

New practice
– The team, consisting of SEs and the NLP expert, uses this corpus to train the Doc2Vec model.
– After validation of the newly trained model, the team can package this add-in application and deploy it to users.
– SEs and/or general users can then install and use the application to search through the UAM body of knowledge efficiently for rationale and references.

Benefits:

• Proven a significant time saving (~12x faster for one pdf) over today’s practice.
• Reusable trained model of the UAM body of knowledge beyond the current study to survey literature relevant to UAM research questions (as opposed to just requirements).
• Extendable to incorporate the Advanced Air Mobility (AAM), NAS, and National Transportation System (NTS) knowledge corpus.
Lessons Learned and Next Steps

• Lessons Learned:
 – Pre-processing pdf before training
 • One record per page: does not produce a good result because:
 – a page could have different research concepts especially at the end of one section and the beginning of the next
 – a page could show an incomplete concept when it takes several pages to articulate the concept.
 • One record per section: produces a better result and is used in our application.
 • Manual process in dataset preparation because each pdf comes in various section layouts. Scripting will need to be customized for each pdf.
 – Grouping the corpus into different themes and building a model for each theme.

• Next Steps:
 – More documents to be included in this corpus.
 – A new use case for this NLP tool to find “similar” requirements.
 • A trained model for a corpus of “requirements” for identifying requirement’s dependencies.