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1 INTRODUCTION	

	

1.1 EXECUTIVE	SUMMARY	

The	Department	of	Defense’s	Community	of	Interest	for	Engineered	Resilient	Systems	(ERS),	led	by	the	US	Army	
Engineer	Research	and	Development	Center	(ERDC),	calls	for	systems	that	are	effective	over	their	life	cycle,	even	
when	the	mission	context	changes	beyond	 its	 initial	 intention.	Towards	this	end,	 tradespace	analysis	 is	of	great	
importance,	which	enables	adaptable	designs	using	diverse	systems	models	 that	can	easily	be	modified	and	re-
used,	and	the	ability	to	iterate	those	designs	quickly	with	a	clear	linkage	to	evolving	mission	needs.	The	Georgia	
Tech	 Research	 Institute	 (GTRI)	 is	 co-developing	 a	web-based,	 collaborative	 tradespace	 environment	 along	with	
ERDC	for	the	ERS	Community	of	Interest.	This	leverages	GTRI’s	expertise	in	collaborative,	executable	Model-Based	
Systems	Engineering	(MBSE),	and	ERDC’s	leadership	of	the	DoD	High	Performance	Computer	(HPC)	infrastructure	
and	operations	research	expertise.		
	
Tradespace	 analysis	 facilitates	 and	 enables	 the	 vision	 and	 goals	 of	 the	 ERS	 program.	 	 It	 is	 a	 proven	operations	
research	 method	 used	 to	 assess	 design	 trades.	 Coupled	 with	 data	 generated	 from	 engineering	 models,	
operational	simulations,	and	other	authoritative	sources,	tradespace	analysis	can	be	used	throughout	a	system’s	
lifecycle,	 particularly	within	 the	 requirements	 generation	 phase,	 to	 expand	 the	 number	 of	 feasible	 alternatives	
analyzed.	 To	 facilitate	 this	 tradespace	 analysis,	 a	 collaborative	 environment	 is	 required	 to	 allow	 researchers	 to	
input	multiple	 variables	 with	 linear	 and	 non-linear	 relationships	 to	 investigate	 viable	 trades	 and	 view	 second,	
third,	and	higher	order	effects	of	changing	parameters.	ERS	therefore	aims	to	create	a	comprehensive	tradespace	
analytics	 capability	 that	 supports	 complex	DoD	 systems	under	 a	wide	 range	 of	 operation	 scenarios.	 This	 effort	
produced	a	collaborative,	modular	open	architecture	 software	 framework,	which	allows	users	 to	conduct	 trade	
studies	 leveraging	executable	MBSE	integrated	with	HPC	assets.	This	enables	communication	of	complex	results	
to	stakeholders	in	order	to	support	effective	decision	processes.	
	
This	Final	Report	will	walk	through	the	systems	engineering	processes	applied,	as	well	as	demonstrate	a	notional	
“design-execute-explore”	workflow.	During	the	“design”	step,	a	user	would	identify	capability	needs	and/or	gaps,	
and	 derive	 requirements;	 a	 decision	 maker	 may	 apply	 utility	 functions	 to	 those	 needs	 to	 support	 analyzing	
alternatives	during	the	“explore”	step.	This	“define”	step	includes	the	definition	of	the	system	itself,	to	include	a	
physical	 decomposition	 (which	 increases	 in	 detail	 with	 further	 iteration).	 Finally,	 the	 design	 step	 includes	 the	
characterization	 of	 any	modeling	 and/or	 analysis	 required	 to	 assess	 the	 system(s)	 of	 interest.	 This	 report	 will	
demonstrate	 how	 the	 Systems	 Modeling	 Language	 was	 used	 to	 achieve	 these	 goals	 via	 a	 collaborative	 web-
authoring	tool.	The	“execute”	step	includes	the	process	of	selecting	the	attributes	to	be	varied,	and	their	bounds.	
This	 includes	 the	 ability	 to	 identify	 sampling	methods,	 to	 include	 various	 forms	of	Monte	Carlo	 simulation	 and	
Designs	of	Experiments.	Further,	the	user	has	the	ability	whether	to	select	to	locally	or	remotely	hosted	modeling	
and	simulation	assets,	such	as	those	run	via	HPC.	Finally,	the	“explore”	step	enables	a	user	to	develop	a	custom	
dashboard	 by	 selecting	 visualizations	 of	 interest,	 to	 include	 classic	 descriptive	 analytics	 such	 as	 interactive	
histograms	and	4-D	bubble	plots,	as	well	as	more	advanced	techniques	to	enable	rapid	Analyses	of	Alternatives,	
based	on	Multi-Objective	Decision	Analysis	leveraging	utility	functions	identified	in	an	earlier	step.	
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1.2 SUMMARY	OF	PRIOR	WORK	

Under	 SERC	 RT-120	 (April	 2014	 through	 June	 2015),	 GTRI	 development	 of	 decision	 support	 methods	 and	 a	
tradespace	 toolset	 framework	 architecture	 in	 support	 of	 ERS1.	 This	 included	 conducting	 research	 and	
development	of	methodologies	such	as	scenario	based	Needs	Context	based	Utility	Functions,	and	risk	mitigation	
of	uncertain	future	events	through	option	buy-ins.	Next,	this	effort	investigated	various	toolset	usability	upgrades,	
building	 on	 GTRI’s	 experience	 in	 building	 web-based,	 collaborative	 systems	 engineering	 frameworks,	 with	
updated	inputs	from	stakeholder	elicited	requirements.		Specific	goals	achieved	for	this	effort	included:	
	

• Developing	utility	 functions	 to	 score	 alternatives	 that	 captured	 components	of	 a	 resiliency	metric	 for	 a	
system	design.		This	effort	covered	elements	of	resilience	across	competing	or	changing	requirements	on	
its	performance	attributes	

• Developing	 an	 initial	 method	 for	 system	 assessment	 to	 select	 components	 or	 alternatives	 given	
uncertainty	in	future	needs	

• Redesigning	and	codifying	a	 tradespace	 tool	which	can	 integrate	 into	 the	ERS	architecture.	 	 This	 tool	 is	
usable	by	variety	of	systems,	e.g.,	ships,	aircraft,	and	ground	vehicles,	and	released	in	April	2015	as	ERS	
TRADESPACE	v1.0	

• Extending	the	work	conducted	under	a	previous	effort	 to	develop	an	API	between	related	collaborative	
tradespace	 tools	 and	 the	 Army	 Research	 Laboratory’s	 EASE	 framework	 to	 increase	 the	 number	 of	
attributes	passed2	

• Working	with	the	Naval	Surface	Warfare	Center	–	Carderock	Division	(NSWC-CD)	to	integrate	models	and	
data/information	 developed	 at	 NSWC-CD	 resulting	 in	 an	 updated	 ship	 model	 characterization,	 and	
updated	modeling	tools	to	study	the	ship	example	used	by	the	Navy	to	help	assess	tens	of	thousands	of	
ship	variants.	

Figure	1	shows	a	snapshot	of	 the	home	screen	of	 the	ERS	TRADESPACE	v1.0	 toolset	developed	under	 this	prior	
SERC	RT-120	work.	Note	 that	 “Define,	 Execute,	Analyze”	are	 the	major	entry	points	 in	 to	 the	ERS	TRADESPACE	
toolset	suite	and	are	immediately	visible	from	the	landing	page.		Intuitively,	these	capture	the	steps	of	defining	a	
user’s	system	of	interest,	executing	a	defined	set	of	analyses	for	that	system,	and	then	analyzing	the	results.		This	
provides	 a	 user	 interface	 for	 analysts	 to	 quickly	 and	 accurately	 assess	 and	 compare	 alternatives	 to	 execute	
materiel	solutions	analysis.		
	
ERS	TRADESPACE	consists	of	a	core,	containing	the	data	structure,	a	layer	containing	the	analytical	process	blocks,	
and	 a	 layer	 through	 which	 analyses	 are	 ordered,	 managed,	 and	 executed.	 	 OpenMDAO,	 an	 open	 source	 tool	
developed	 by	 NASA,	 is	 a	 key	 element	 of	 this	 latter	 layer,	 and	 it	 is	 here	 that	 a	 tradespace	 is	 generated	 and	
interaction	 with	 externally	 hosted	models	 is	 controlled.	 These	models	 are	 reachable	 via	 tools	 external	 to	 ERS	
TRADESPACE	and	exist	as	some	synthesis	of	a	server,	a	library	of	various	analytical	models	and	simulations,	and	an	
interface	through	which	external	software	may	submit	inquiries.	The	SERC	RT-120	Final	Report	provides,	in	great	
detail,	a	description	of	theoretical	underpinnings	associated	with	capturing	the	“resiliency”	concept,	as	well	as	an	
“under	 the	 hood”	 walkthrough	 of	 the	 ERS	 TRADESPACE	 v1.0	 software.	 This	 RT-120	 Final	 Report	 included	 a	

																																																													
	
1 The Final Report for SERC RT-120 can be accessed at:  

http://www.sercuarc.org/wp-content/uploads/2014/05/RT-120_Technical-Report_ERS-Tradespace-Tools.pdf 
 
2 The Executable Architecting Systems Engineering (EASE) framework is an Army Research Laboratory framework 

that provides an integration point for multiple large scale operational simulations.  
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recommendations	section	with	proposed	improvements	to	the	tradespace	software	toolset,	many	of	which	were	
realized	under	the	RT-145	effort	described	in	this	document.	
	

	
Figure	1.	The	ERS	TRADESPACE	v1.0	toolset	developed	under	the	prior	SERC	RT-120	effort	

Note	 that	 the	 effort	 described	 in	 this	 report	 includes	 updates	 to	 the	 ERS	 TRADESPACE	 v1.0	 software,	 released	
under	 RT-145	 as	 version	 1.4.1	 and	 rebranded	 by	 ERDC	 as	 the	 ERS	 TradeBuilder.	 A	 detailed	 walkthrough	 of	
TradeBuilder	is	provided	later	in	this	document	in	Section	3.	
	

1.3 SUMMARY	OF	DOCUMENT	

This	document	is	divided	into	the	following	sections:		
• Section	 2	provides	 a	 description	 of	 the	 analytical	 underpinnings	 of	 the	 enhanced	 resiliency	 framework	

developed	as	part	of	this	research.	This	includes	a	thorough	description	of	what	“resiliency”	means	to	the	
systems	engineering	process,	and	the	related	impacts	and	value	of	tradespace	analysis.	This	breaks	down	
to	four	primary	areas	researched	for	this	effort,	to	include	uncertainty,	disparate	Concepts	of	Operations,	
dealing	with	product	families,	and	systems	of	systems/portfolio	assessments.	

• Section	3	walks	the	reader	through	ERS	TradeBuilder,	the	tradespace	analysis	software	developed	for	this	
effort	 by	 GTRI.	 This	 includes	 a	 detailed	 description	 of	 the	 plug-in,	 modular	 architecture	 approach	 for	
software	 development,	 and	 the	 Application	 Protocol	 Interface	 (API)	 one	 would	 use	 to	 extend	 the	
capabilities	of	this	toolset.	A	special	focus	is	given	to	the	model	and	simulation	execution	engine	approach	
developed.	 Note	 that	 TradeBuilder	 is	 the	 version	 1.4.1	 release	 of	 what	 was	 referred	 to	 as	 ERS	
TRADESPACE	under	the	prior	SERC-RT-120	effort.	Additionally,	 this	section	describes	the	modules	which	
GTRI	developed	for	ERS	TradeAnalyzer,	the	large-data-set	visualization	software	developed	by	ERDC.3		

																																																													
	
3 TradeAnalyzer and TradeBuilder are the two primary components of the broader ERS TradeStudio Suite. 

T	 R	 A	 D	 E	 S	 P	 A	 C	 E	
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• Section	 4	 describes	 GTRI’s	 effort	 to	 align	 TradeBuilder	 with	 ERSTAT,	 a	 toolset	 developed	 by	 ERDC	 to	
deploy	modeling	and	simulation	on	High	Performance	Computing	assets.	This	includes	showing	how	high	
fidelity	modeling	and	simulation	can	be	directly	integrated	within	the	systems	engineering	and	tradespace	
analysis	process.		

• Section	 5	 provides	 a	 summary	 of	 several	 analysis	 modules	 developed	 within	 TradeBuilder	 to	 support	
systems	 engineering,	 to	 include	 designs	 of	 experiments,	 optimization,	 and	 using	 the	 R	 programming	
language	to	support	statistical	analysis.	

• Section	6	describes	how	ERS	TradeBuilder	leverages	the	Systems	Modeling	Language	(SysML)	to	support	
system	and	process	definition,	to	include	in-browser	collaborative	editing	of	SysML	models.	

• Section	7	describes	 the	activities	 to	support	Analyses	of	Alternatives,	 to	 include	modules	developed	 for	
both	TradeBuilder	and	TradeAnalyzer.	

• Section	 8	 describes	 the	 interface	 developed	 between	 ERS	 TradeBuilder	 and	 Executable	 Architecting	
Systems	 Engineering	 (EASE),	 a	 simulation	 framework	 which	 links	 analytical,	 experimental,	 and	 training	
objectives	with	 the	 technical	 complexity	 of	modeling	 and	 simulation.	 EASE,	 developed	 by	 the	US	Army	
Research	Laboratory,	enables	exploration	of	operational	aspects	of	the	analytical	questions	in	simulation.	
The	 integration	 with	 ERS	 TradeBuilder	 further	 enables	 users	 to	 evaluation	 higher-level	 Measures	 of	
Effectiveness	based	on	scenarios	(i.e.	the	scenario	based	Needs	Context	methodology	 introduced	in	this	
work).	Note	that	this	 interface	was	developed	under	a	prior	effort;	this	effort	extended	the	 interface	to	
account	for	the	updates	to	TradeBuilder.	

• Section	 9	 provides	 information	 on	 specific	 DoD	 programs	 supported	 during	 this	 effort,	 using	 the	
TradeBuilder	 tools.	 This	 includes	 developing	 a	 notional	 fighter	 aircraft	 sizing	 model,	 a	 rotorcraft	
conceptual	design	model,	and	a	ground	vehicle	model.	

• Section	10	closes	the	formal	portion	of	this	document	with	a	summary	and	series	of	recommendations	
• Section	11	provides	a	list	of	references	cited	throughout	this	document.	
• Appendix	 A	 –	 Publication	 &	 Outreach	 Outputs	 for	 RT-145	 provides	 those	 publications	 and	 outreach	

activities	associated	with	this	effort.	
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2 ENHANCED	RESILIENCY	FRAMEWORKS	AND	METRICS	

	
The	analytical	goals	for	the	suite	of	ERS	decision	support	tools	are	to	begin	to	create	the	building	blocks	whereby	
ERS	may	guide	and	tailor	resiliency	exploration	of	a	tradespace	for	any	future	system.		Within	the	framework	of	
ERS,	the	present	analytical	development	adheres	to	a	specific	context	of	evaluation.	 	Namely,	 this	task	seeks	to	
expand	and	mature	how	we	may	evaluate	early-stage,	Pre-Milestone	A	designs	 in	 terms	of	 their	 fielded	system	
capabilities,	performance,	and	operational	context	through	tradespace	exploration.			
	
These	efforts	will	preserve	synergy	with	the	analytical	methods	already	developed	for	the	broader	ERS	effort	as	
well	as	the	ERS	TradeStudio	software	engineering	effort	described	in	Tasks	3	and	7.		The	supporting	software	and	
architecture	engineering	helps	guide	 these	analytical	processes	effectively	and	efficiently,	orders	and	preserves	
analytical	executions,	and	supports	visualization	and	 interactive	exploration	of	 the	 tradespace.	All	efforts	under	
this	task	will	consequently	focus	on	maturing	and	extending	analytical	methods	in	ways	that	are:	

• Realizable	based	on	available	data	(i.e.,	recognize	the	potential	of	limited	data	availability	outside	of	
the	tradespace	itself)	

• Executable	in	quantitative	analyses	
• Scalable	to	large	data	sets	for	complex	engineered	systems	
• Repeatable	across	analyses	without	major	changes	to	the	analytical	construct(s)	(i.e.,	ease	of	use)	
• Directly	 applicable	 to	 dimensions	 of	 resiliency	 as	 defined	 by	 ERS	 via	 building	 blocks	 that	 are	

consistent	with	existing	ontological	bases.	
	
There	were	four	primary	foci	of	this	task	for	this	phase	of	the	program:	

i. Uncertainty	
ii. Disparate	operational	environments	and	concepts	of	operations	(CONOPS)	
iii. Product	family	identification	and	evaluation	
iv. Systems	of	systems	and	capability	portfolio	assessment	

2.1 UNCERTAINTY	

	
Objectives	
	
There	will	be	many	sources	of	uncertainty	inherent	in	a	given	tradespace	data	set,	whether	associated	with	data,	
models,	 SME	 rankings,	 etc.	 	 In	 some	 cases,	 we	 can	 identify	 where	 we	 can	 best	 and	 most	 meaningfully	 apply	
uncertainty	to	the	analyses.		In	others,	this	remains	more	of	a	question.	
	
Efforts	under	 this	 subtask	were	 focused	along	 two	different	 lines.	 	 First,	we	matured	and	expanded	 the	Needs	
Context	construct	from	previous	work	(to	include	work	from	GTRI’s	SERC	RT-120	effort)	to	add	more	operational	
insight	 and	 filtering	 of	 potential	 designs.	 	 Second,	 we	 evaluated	 uncertainty	 directly,	 using	 the	 Needs	 Context	
structure	developed	previously.	 	The	goals	were	 to	better	understand	what	 types	of	uncertainty	contributed	 to	
the	final	decision	making	and	how	they	should	be	used	within	or	across	design	variable	inputs	and	outputs	from	
disparate	 models	 and	 simulations	 while	 maintaining	 computational	 feasibility	 as	 the	 dimensionality	 of	 the	
problem	 increases.	 	 Finally,	 we	 considered	 uncertainty	 at	 a	 higher	 level	 as	 it	 related	 directly	 to	 how	 deeply	
uncertain	we	might	be	about	the	contexts	in	which	we	are	evaluating	our	system	and	what	approaches	could	help	
us	move	forward	in	the	decision	space.	
	
This	subtask	 is	 strongly	 related	to	 the	efforts	surrounding	 the	disparate	operational	environments	and	CONOPS	
(section	2.2),	and	overlaps	will	be	pointed	out	and	discussed	in	detail	in	that	section.		
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Work	Description	and	Accomplishments	
	
Maturing	and	Expanding	the	Needs	Context.	
A	 significant	 concern	 during	 early	 phases	 of	 acquisition,	 or	 during	 the	 Pre-Milestone	 A	 analysis	 of	 the	 DoD	
Acquisition	process,	is	the	resiliency	of	a	system	design	across	simultaneously	competing	or	sequentially	changing	
requirements	 on	 its	 performance	 attributes.	 	 A	 Needs	 Context,	 defined	 in	 previous	 work	 (Sitterle,	 Curry,	 and	
Ender,	2014;	Sitterle,	Freeman,	Goerger,	and	Ender,	2015),	is	a	scalable,	applied	methodology	to	capture	certain	
resiliency	 dimensions	 related	 to	 how	 well	 a	 system	 performs	 its	 functions	 in	 the	 face	 of	 requirements	
perturbations.	 	 It	 builds	 from	 robustness	 as	defined	by	 (Ryan,	 Jacques,	and	Colombi,	 2013)	 and	 the	 concept	of	
Broad	Utility	advocated	by	(Goerger,	Madni,	and	Elsinger,	2014),	creating	a	requirements-based	evaluation	of	the	
non-cost	 value	 of	 system	 design	 alternatives.	 	 	 	 Needs	 Contexts	 may	 be	 more	 completely	 described	 as	
characterizing	 “Robustness	 of	 Fielded	 System	 Capabilities	 and	 Capacity	 with	 respect	 to	 Operational	
Requirements”.	 	 Contexts	 are	 defined	 based	 on	 flexible	 subsets	 of	 performance	 attributes	 relevant	 to	 the	
stakeholder(s)	 and	 ranking	 of	 those	 attributes	within	 each.	 	 Succinctly,	 an	 individual	Needs	 Context	 specifies	 a	
subset	of	evaluation	measures	deemed	critical	 to	a	stakeholder	as	 the	basis	 for	analysis.	The	motivation	 is	 that	
choices	must	be	made	based	on	what	 is	 valued	most	by	 stakeholders,	 recognizing	 that	 some	stakeholders	may	
have	a	greater	influence.		Together,	multiple	Needs	Contexts	can	be	constructed	to	represent	different	viewpoints	
and	can	represent	different	or	directly	competing	objectives	for	a	system’s	performance:	
	

• Different	stakeholders,	each	with	different	or	competing	priorities	in	parallel	
• Changes	in	requirements	over	time	(future	performance	requirements	differ	in	series)	
• Different	mission	profiles	with	performance	objectives,	whether	in	parallel	or	in	series	

	
Requirements	Basis	for	Value	Functions.		
Value	of	a	given	system	attribute	is	scaled	against	objective	and	threshold	requirement	levels	using	a	KPP	concept	
to	promote	comparability	across	analyses.		The	attribute	value	functions	limit	all	possible	valuations	to	the	range	
of	0	to	1	by	assigning	any	levels	below	threshold	or	above	the	objective	equal	to	0	or	1	respectively.		A	tradespace	
may	or	may	not	cover	the	entire	range.	 	Value	of	a	system	design	alternative	 is	then	assessed	using	an	additive	
multi-attribute	 value	 (MAV)	model,	 synergistic	 with	 the	 concept	 of	 evaluating	 Broad	 Utility	 via	 the	 robustness	
descriptor	presented	above.		Since	each	Needs	Context	may	be	defined	using	different	attributes,	and/or	different	
valuations	 and	 preference	 weightings,	 Needs	 Contexts	 can	 produce	 a	 different	 value	 for	 each	 system	 design	
alternative	k	(SDk)	within	each	individual	Needs	Context	m,	i.e.:	
	

|			Uk	=	wi	*	vi(Yik)	+	wj	*	vj(Yjk)	+…	wn	*	vn(Ynk)	=	nΣi=1		wi	*	vi(Yik)		|	Needs	Context	m	
	
Uk	denotes	the	overall	value	of	system	design	alternative	k	(SDk)	for	a	given	Needs	Context,	Yik	represents	a	system	
attribute	i	for	SDk,	each	vi	is	a	value	function	expressing	the	relative	value	of	the	given	system	attribute	level	to	a	
stakeholder,	 and	wi	 are	weights	derived	 from	preference	 rankings	or	other	means.	 	 In	 keeping	with	 traditional	
utility	 theory,	 overall	 system	 value	 is	 limited	 to	 the	 range	 of	 0	 to	 1.	 	 Value	 functions	 are	 typically	 linear	 or	
exponential	 expressions	 but	 may	 be	 any	monotonic	 function.	 	 Cost	 is	 a	 function	 of	 system	 design	 alternative	
characteristics,	 though	 it	 depends	 on	 other	 influences	 and	 variables	 as	 well.	 	 Utility	 and	 cost	 are	 therefore	
expressed	as	related	dimensions,	linked	by	an	underlying	SDk.			
	
Limitations	of	Additive	Multi-Attribute	Value	Models.			
In	 the	 previously	 cited	work,	 the	Needs	 Context	 served	 as	 the	 basis	 from	which	 an	 analyst	 could	 construct	 an	
overall	valuation	for	each	system	design	alternative	from	the	perspective	of	the	individual	stakeholders.		Though	
using	a	unique,	requirements-based	valuation	construct,	 the	overall	valuation	still	 relied	on	the	commonly	used	
additive	multi-attribute	 value	 (additive	MAV)	model,	 also	 called	 the	 sum	 additive	weight	 (SAW)	method.	 	 This	
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approach	is	scalable	and	intuitive,	yet	it	does	not	adequately	represent	a	more	operationally	focused	perspective.		
For	example,	consider	a	set	of	five	attributes	each	with	equal	weights	(all	wi	=	0.2).		A	system	design	that	exhibits	
valuations	of	each	attribute	to	a	level	of	0.8	(all	vi	=	0.8)	will	produce	the	same	measure	of	overall	value,	Uk	=	0.8,	
as	a	design	alternative	where	4	of	the	5	attributes	meet	the	objective	but	one	attribute	fails	to	meet	threshold	(vi	
=	[1,	1,	1,	1,	0]).		Similarly,	as	the	number	of	attributes	in	the	measure	increases,	the	impact	of	attributes	failing	to	
meet	threshold	decreases.		This	same	effect	can	be	seen	with	the	traditional	attribute	value	scaling	to	the	given	
tradespace.	 	 In	an	operational	environment,	a	defense	system	failing	 to	achieve	a	key	 requirement	 threshold	 is	
not	equally	acceptable.		
	
Maturing	to	an	Operational	Needs	Context	with	a	Penalty	Function.	
The	 challenge	 is	 to	mature	 the	overall	 valuation	measure	 from	a	 traditional	 additive	MAV	 to	 a	 construct	more	
representative	 of	 the	 operational	 viewpoint.	 	 The	 Needs	 Context	 is	 already	well	 suited	 to	 represent	 disparate	
operational	scenarios	that	may	exist,	and	by	definition	it	captures	those	measures	of	performance	deemed	critical	
from	 a	 given	 operational	 perspective.	 	 However,	 failure	 to	 meet	 one	 or	 more	 critical	 requirement	 thresholds	
should	be	either	readily	apparent	or	carry	some	penalty	that	prevents	the	alternative	from	possessing	a	valuation	
on	the	same	level	as	an	alternative	meeting	all	thresholds.		Since	there	are	other	types	of	analyses	that	may	need	
data	points	representing	designs	that	do	well	in	many	measures	but	fail	in	one	or	two	to	persist,	we	will	not	force	
the	valuation	for	these	designs	to	zero.	
	
Considering	the	operational	perspective,	we	sought	to	modify	the	additive	MAV	model	to	include	an	“operational	
penalty”	 for	 alternatives	 with	 any	 one	 or	 more	 individual	 attribute	 value	 functions	 evaluating	 to	 zero.	 	 The	
additive	MAV	model	value	was	 taken	as	 the	maximum	valuation	an	alternative	could	achieve	 (as	 it	 contains	no	
penalty),	while	the	overall	valuation	even	with	every	attribute	failing	to	meet	threshold	preserved	the	understood	
lower	limit	of	zero.		An	exponential	function	of	the	value	was	used	to	generate	a	penalty	effectively	equal	to	the	
weight	 of	 any	 attribute	with	 a	 value	of	 zero	 and	no	penalty	 otherwise.	 	 A	 direct	 comparison	of	 the	 traditional	
additive	MAV	model	and	the	model	with	operational	penalty	for	a	given	system	design	alternative	are	as	follows:	
	

U+MAV,k	=	nΣi=1		wi	*	vi(Yik)											UOpPenalty,k	=	U+MAV,k	*	[	1	-		nΣi=1		wi	*	exp(	-	θ	*	vi(Yik))		]	
	
where	n	 represents	the	number	of	attributes	 included	 in	the	value	model,	wi	are	the	weights	of	each	attribute,	
and	vi	are	the	values	of	 the	attributes	 for	 the	given	design	alternative	as	obtained	from	the	 individual	attribute	
value	 functions	 as	 before.	 	 The	 exponential	 penalty	 function	 produces	UOpPenalty	 =	U+MAV	when	 all	 requirements	
meet	or	exceed	threshold	levels,	and	a	penalty	effectively	equal	to	the	weight	of	the	individual	attribute	if	its	level	
is	below	threshold	such	 that	vi	=	0.	 	θ	 is	 chosen	 to	be	sufficiently	 large	as	 to	ensure	 this	outcome	 for	even	 the	
smallest	 feasible	 value.	 	θ	 =	 1000,	 for	 example,	 reduces	 the	 exponential	 term	 to	 4.54E-5	 even	 if	 an	 individual	
valuation	vi	=	0.01.	
	
Weighting.			
Methods	used	in	ERS	TradeBuilder	and	all	methods	described	here	are	agnostic	to	how	ranks,	or	even	weights,	are	
derived.		Weights	in	an	additive	MAV	model	may	originate	from	any	number	of	methods	including	subject	matter	
expert	 (SME)	opinions,	historical	priorities,	 guided	stakeholder	discussions,	and	pairwise	comparisons.	 	Another	
approach	that	may	be	particularly	useful	for	analysis	of	early-stage	designs	is	to	use	surrogate	weights	based	on	
the	 attribute	 rankings.	 	 If	 ranks	 are	 inconsequential	 or	 unknown	 across	 our	 subset	 of	 critical	 performance	
measures,	 equal	 weights	 are	 an	 appropriate	 starting	 point.	 	 If	 the	 ranks	 are	 known	 and	 the	 preference	 order	
holds,	different	weighting	methods	may	better	reflect	how	the	ranks	are	valued,	e.g.,	linearly,	exponentially,	etc.	
(Roszkowska,	 2013).	 	 Among	 these,	 rank	 order	 centroid	 (ROC)	 surrogate	 weights	 are	 one	 of	 the	 most	 robust	
options	when	there	is	some	uncertainty	in	weights	but	the	rank	preferences	are	clear.		ROC	weights	are	computed	
from	the	vertices	of	the	simplex	where	w1	≥	w2	≥	…	≥	wn	≥	0.		Weights	are	then	defined	as	the	coordinates	of	the	
centroid	for	the	simplex,	found	by	averaging	the	coordinates	of	the	defining	vertices.		This	approach	assumes	that	
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the	 information	 set	 on	 the	 weights	 is	 completely	 specified	 by	 the	 ranks	 and	 that	 no	 point	 in	 the	 simplex	 is	
therefore	more	likely	than	another	(i.e.,	weight	density	is	uniformly	distributed	over	the	simplex).		Consequently,	
ROC	weights	 are	 the	 expected	 value	weights	 for	 the	 respective	 probability	 density	 functions	 over	 the	 feasible	
weight	space	(Barron	and	Barrett,	1996).		(This	is	readily	demonstrated	using	a	Monte	Carlo	simulation.)		
	
Despite	their	advantages,	ROC	weights	alone	do	not	solve	issues	of	range	sensitivity	in	decision	analysis.		Weights	
are	usually	adjusted	from	one	tradespace	analysis	to	the	next	because	MAV	functions	are	traditionally	normalized	
to	 the	 range	 of	 the	 local	 decision	 context,	 the	 current	 tradespace.	 	 Normalizing	 this	 way	 can	 produce	 very	
different	 decision	 outcomes	when	 the	 tradespace	 range	 changes	 if	 the	 weights	 are	 not	 also	 changed.	 	 This	 is	
referred	to	as	the	“range	dependence	of	weights”	or	“range	sensitivity	principle”.			
	
Swing	weights	are	frequently	used	to	preserve	consistent	decision	outcomes	 in	the	face	of	changing	tradespace	
ranges	 even	 though	 this	 was	 not	 the	 original	 intent.	 	 Swing	 weights	 were	 developed	 to	 adjust	 the	 weighting	
scheme	in	the	face	of	restricting	a	set	of	alternatives	under	consideration	to	a	narrow	region	of	preference	so	that	
the	final	ranking	of	alternatives	would	trade	off	of	the	dimensions	of	analysis	driving	that	particular	set.		A	classic	
example	 of	 Dr.	 Greg	 Parnell	 is	 that	 of	 car	 safety.	 	 If	 car	 safety	 is	 highly	 important	 and	 the	 alternatives	 under	
consideration	includes	a	wide	range	of	safety	values,	then	it	is	appropriate	to	weight	the	safety	attribute	highly	to	
best	 reflect	 the	 stakeholder	 preferences.	 	 If,	 however,	 car	 safety	 is	 deemed	 so	 important	 that	 a	 later	 set	 of	
alternatives	 under	 consideration	 only	 includes	 those	 that	 are	 highly	 safe,	 then	 swing	 weights	 allow	 the	
alternatives	 to	 be	 best	 evaluated	 on	 the	 other	 prioritized	 attributes	 according	 to	 the	 stakeholder	 preferences	
(Johnson,	 Parnell,	 Tani,	 and	 Bresnick,	 2013).	 	 This	 concept	 has	 been	widely	misinterpreted	 as	 a	 need	 to	 apply	
swing	weights	whenever	the	range	of	the	tradespace	changes,	which	is	not	the	basis	for	this	approach	at	all.			
	
The	methods	advocated	here,	including	using	an	external	reference	for	valuation	(and	namely	one	compatible	with	
the	DoD	understanding	of	requirements),	are	directly	compatible	with	using	swing	weights	as	they	are	intended	
to	 be	 used	 as	 a	 reflection	 of	 preference	 in	 the	 set.	 	However,	we	 strongly	 advocate	 against	 using	 any	method	
(including	a	misused	swing	weight	approach)	where	normalization	or	weighting	shifts	simply	because	the	range	of	
the	current	tradespace	instantiation	changes.			
	
Understanding	 that	 intuitive	 perceptions	 of	 attribute	 importance	 are	 often	 independent	 of	 the	 range	 of	 the	
outcomes,	we	focused	instead	on	how	to	adjust	the	value	functions	that	effectively	grade	the	individual	attributes	
within	the	MAV	model.		Developing	value	functions	that	normalize	to	a	basis	external	to	the	local	decision	context	
offers	 two	 primary	 advantages.	 	 First,	 it	 preserves	 consistency	 in	 decision	 outcomes	 just	 as	 do	 the	 previously	
developed	swing	weight	methods.		Second,	externally	valuing	attributes	promotes	direct	comparability	from	one	
tradespace	to	the	next	while	weight-adjusting	methods	with	tradespace-dependent	value	functions	do	not.		When	
using	 a	 value	 function	 basis	 external	 to	 the	 tradespace,	 weight-adjusting	 methods	 are	 not	 necessary.	 	 Our	
approach	exploiting	the	KPP/KSA	requirements	structure	to	 form	value	 functions	not	dependent	on	the	current	
tradespace	 range	 also	 offers	 a	 clear	 analytical	 link	 to	 requirements.	 	 The	 impact	 of	 competing	 or	 changing	
requirements	can	readily	be	compared	through	construction	of	new	Operational	Needs	Contexts.		ROC	weights,	as	
expected	values	over	the	feasible	weight	space,	are	now	a	solid	starting	point	for	analyses	when	more	rigorously	
obtained	weight	data	are	not	available.		When	using	an	additive	MAV	model	and	the	individual	valuations	are	also	
expected	 values	 of	 the	 given	 attributes,	 ROC	 weights	 produce	 the	 expected	 MAV	 Broad	 Utility	 given	 the	
preference	order	established	by	the	weights.	
	
	
Requirements	Differentiation.			
As	discussed	earlier,	requirements	may	be	expressed	according	to	hierarchical	type.		While	the	Needs	Context	and	
Operational	 Needs	 Context	 valuation	 models	 presented	 above	 make	 no	 distinction	 between	 types	 of	
requirements,	the	models	are	easily	amenable	to	do	so.		Weights	in	any	MAV	are	scaling	constants	and,	as	such,	
may	be	“re-scaled”	if	necessary	to	differentiate	between	levels	of	priority	or	value.		Returning	to	the	concept	of	
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“must”,	“should”,	and	“could”	have	requirements	corresponding	to	KPP,	KSA,	and	OPP/Tier	III	requirements	types	
respectively,	 the	 equations	 used	 to	 assess	 Broad	 Utility	 may	 be	 altered	 via	 a	 “requirement	 weight”,	 βi.	 	 For	
example,	all	“must	have”	requirements	could	be	assigned	βi	=	1,	which	reduces	to	the	previous	version	of	these	
value	models.		Measures	of	performance	classified	as	“should	have”	and	“could	have”	requirement	types,	might	
be	assigned	values	of	0.8	and	0.6	 for	βi	 respectively.	 	The	βi	values	 for	 these	 lower	 level	 requirement	 types	are	
simply	examples	in	accordance	with	but	not	directly	based	on	DoD	guidelines.		The	following	valuation	shows	the	
function	 form	 when	 the	 requirement	 weight	 is	 only	 applied	 to	 the	 penalty	 term	 if	 a	 design	 fails	 to	 meet	 a	
requirement	threshold:	
	

UOpPenalty-β,k	=	U+MAV,k	*	[	1	-		nΣi=1		βi	*	wi	*	exp(	-	θ	*	vi(Yik))		]	
	
If	 the	 βi	 term	 is	 applied	 in	 the	 traditional	U+MAV,k	 model	 as	 well	 (yielding	U+MAV-β,k	 =	 nΣi=1	 	 βi	 *	 wi	 *	 vi(Yik)	 	 and	
subsequently	a	UOpPenalty-β,k	model	also	using	this	form)	,	analyses	that	choose	to	focus	on	OPP/Tier	III	measures	will	
not	 yield	 valuations	 of	 Broad	 Utility	 on	 par	 with	 those	 based	 only	 on	 critical,	 KPP	 type	 measures	 even	 when	
meeting	all	requirements.		That	can	be	logical	in	the	sense	designs	focused	on	meeting	OPP/Tier	III	requirements	
should	not	be	valued	as	highly	as	those	meeting	KPPs.		The	key	to	keeping	such	analyses	meaningful,	however,	is	
consistency	in	application	and	documenting	why	that	application	is	warranted.			
	
	
Directly	Evaluating	Locations	of	Uncertainty	in	the	Decision	Analysis	and	their	Impact.			
We	focused	on	better	understanding	what	types	of	uncertainty	contributed	to	the	final	decision	making	and	how	
they	should	be	used	within	or	across	design	variable	 inputs	and	outputs	from	disparate	models	and	simulations	
while	maintaining	computational	feasibility.		There	is	an	enormous	body	of	work	on	uncertainty	and	how	it	could	
apply	to	various	modeling	problems.		In	many	of	those	studies,	however,	the	methods	used	assume	independence	
between	the	variables	and	relatively	normal	distributions	for	possible	bounds	on	the	variables	for	the	results	to	be	
meaningfully	interpretable.		In	engineering	systems	design,	however,	neither	will	be	the	normal	case.			
	
As	an	openly	sharable	example,	a	traditional	additive	MAV	valuation	model	and	the	operational	penalty	valuation	
model	were	applied	to	the	Iris	dataset,	a	multivariate	data	set	introduced	by	(Fisher,	1936)	and	is	also	included	in	
the	Seaborn	Python	visualization	library	(Waskom,	2015).		We	also	used	this	data	set	as	a	shareable	example	from	
which	to	evaluate	the	impact	of	uncertainty	on	different	parameters	directly	impacting	the	decision	analysis.	4		
	
Approaches	 investigating	uncertainty	on	attribute	weights	 in	additive	value	models	are	well	defined	with	many	
extensions	as	discussed	in	(Sitterle,	et.	al,	2016).		They	apply	well	to	the	UOpPenalty	model,	but	there	are	interesting	
ramifications	when	investigating	uncertainty	 in	the	value	functions	comprising	the	model	and	the	impact	of	this	
synthesis	with	 the	UOpPenalty	 construct.	 	 First,	 if	 normalizing	attribute	 value	 to	 the	 tradespace	 range,	uncertainty	
must	 be	 characterized	 or	 propagated	 prior	 to	 normalization.	 	 Otherwise,	 valuations	 at	 range	 extremes	 can	
produce	values	below	0	or	above	1.		In	contrast,	distributions	associated	with	uncertainty	can	be	incorporated	at	
any	 stage	 in	 the	 analysis	 when	 using	 an	 external	 value	 reference;	 attribute	 values	 will	 always	 be	 bounded	
between	0	and	1.			
	
Interesting	dynamics	appear	for	uncertain	attributes	with	levels	close	to	their	objective	and	threshold.		As	shown	
in	 Figure	 2,	 which	 investigated	 a	 uniform	 distribution	 of	 uncertainty	 on	 the	 iris	 attributes,	 data	 (shown	 as	
normalized	 histograms)	 can	 be	 highly	 skewed	 near	 the	 objective	 (sepal_width)	 and	 discontinuous	 near	 the	
threshold	(petal_length).		Pulling	value	function	distributions	with	these	characteristics	into	a	higher-level	model	
																																																													
	
4 A mode defense-oriented example of the traditional MAV versus operational penalty MAV approach is stepped 

through in the “Analysis of Alternatives Roadmap” interim report for this effort. (Sitterle, Balestrini-Robinson, 
Freeman, and Ender, 2016) 
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such	as	UOpPenalty	necessitates	a	sampling	strategy	since	they	are	not	readily	mathematically	convoluted	with	other	
distributions.		Figure	3	extends	these	results	to	the	evaluation	of	Broad	Utility	as	characterized	by	the	U+MAV	and	
UOpPenalty	constructs.		Figure	3	(a)	and	(b)	show	uncertainty	only	on	the	weights,	evaluated	through	a	Monte	Carlo	
simulation	 as	 described	 by	 (Lahdelma,	 Miettinen,	 and	 Salminen,	 2003).	 	 The	 distributions	 are	 understandably	
narrower	when	rank	order	is	enforced	as	shown	in	(b).			Figure	3	(c)	and	(d)	then	show	the	impact	of	uncertainty	
on	 the	 weights	 and	 iris	 “alternative”	 valuations	 when	 preference	 ranks	 are	 enforced.	 	 Both	 distributions	 are	
broader	 than	 the	 comparable	 case	 for	 weights-only	 uncertainty	 in	 (b).	 	 The	UOpPenalty	 case	 in	 (d)	magnifies	 the	
effect	from	(c),	resulting	in	a	heavier	distribution	toward	the	lower	values	due	to	uncertainty	of	an	attribute	near	
to	its	threshold	(petal_length).			
	
	

	
Figure	2.		Illustration	of	Impact	of	Uncertainty	on	Value	Function	Results	

	

	
	

Figure	3.	Illustration	of	Relation	between	Broad	Utility	and	Uncertainty	

	
This	 underscores	 the	 importance	 of	 rigorously	 investigating	 design	 alternatives	 with	 uncertain	 attribute	 levels	
near	to	thresholds	and/or	objectives,	especially	if	they	are	classified	as	being	in	the	“best	set”	of	Pareto	designs.		
Valuation	uncertainty	can	result	in	highly	skewed	or	discontinuous	distributions,	and	uncertainty	on	weights	and	
values	 can	 produce	 a	 bimodal	 aggregate	 distribution	when	 an	 operational	 penalty	 is	 applied.	 	 Simply	 taking	 a	
mean,	standard	deviation,	or	quartile	representation	may	not	represent	the	uncertainty	well.		This	highlights	the	
utility	of	 cumulative	distribution	 functions	 in	 some	evaluations	when	 the	PDFs	exhibit	 these	characteristics.	 	As	
with	 any	mathematical	method,	 selection	 and	 effectiveness	 of	 synthesis	with	 other	methods	 are	 problem	 and	
process	dependent.	 	Uncertainty	analysis	with	respect	to	identifying	a	“best	set”	of	alternatives	should	focus	on	
what	aspects	of	uncertainty	change	our	decision	about	which	design	alternatives	are	included	in	that	set.			
	
In	traditional	decision	analysis	of	tradespace	data,	the	context	of	an	evaluation	is	usually	based	on	the	whole	of	a	
specific	instantiation	of	a	tradespace.		Yet	an	ERS	perspective	requires	the	maturation	of	a	more	holistic	approach	
toward	integrating	the	whole	tradespace	analytical	view	with	analyses	targeted	toward	the	“best”	set	of	designs.		
As	 we	will	 discuss	 in	 Section	 2.2,	 focusing	 some	 aspects	 of	 the	 analysis	 on	 a	more	 tailored,	 decision-oriented	
space,	a	“Local”	data	set,	will	enable	deeper	insights	regarding	sensitivity,	uncertainty,	and	correlations	across	the	
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“best”	set	of	designs.		Toward	this	end,	the	Operational	Needs	Context	can	alter	which	alternatives	are	in	that	set	
via	 the	 penalty	 function.	 	 It	 may	 be	 used	 after	 a	 different	 analytical	 treatment	 narrows	 the	 alternatives	 or	
attributes	 thereof,	 or	 it	 may	 be	 used	 as	 a	 precursor,	 reducing	 the	 “input	 tradespace”	 to	 the	 next	 analytical	
treatment	to	a	more	rational	set	of	designs.	 	Which	way	to	take	a	“best	set”	to	propagate	to	the	next	analytical	
processes	depends	entirely	on	the	needs	of	the	next	treatment	and	the	overall	process.			
	
Deep	Uncertainty	about	the	Context	of	our	Evaluation.	
For	our	final	focus	of	this	subtask,	we	considered	uncertainty	at	a	higher	level	as	it	related	directly	to	how	deeply	
uncertain	we	might	be	about	the	contexts	in	which	we	are	evaluating	our	system	and	what	approaches	could	help	
us	move	forward	in	the	decision	space.	
	
To	address	Defense	contexts,	systems	engineers	will	find	it	necessary	to	test	potential	design	alternatives	against	
multiple	 diverse	 scenarios	 to	 understand	 the	 resilience	 of	 a	 design’s	 capabilities	 against	 uncertain	 operational	
needs.		This	is	a	distinctly	different	problem	from	assigning	a	distribution	or	other	probabilistic	representation	to	
some	 strongly	 understood	 parameter	 such	 as	 variation	 in	machined	 parts	 or	 even	 environmental	 temperature	
variation	in	a	given	region.		There	are	many	cases	where	we	cannot	help	being	uncertain	about	our	uncertainty.		
For	 example,	 an	 analyst	 cannot	 simply	 put	 bounds	 reflecting	 high,	medium,	 or	 low	 levels	 of	 uncertainty	 on	 an	
asymmetric	or	even	generic	threat	in	the	course	of	evaluating	potential	system	performance.		The	very	nature	of	a	
threat	can	and	will	 change,	often	unpredictably.	 	 Similarly,	 the	operational	environment	may	 radically	alter	 the	
realized	 performance	 from	 certain	 types	 of	 sensor	 systems,	 and	 one	 SoS	 stakeholder	 may	 need	 to	 address	 a	
completely	 different	 type	of	 adversary	 threat	 than	 another	 SoS	 stakeholder.	 	 In	 these	 cases,	we	 cannot	 simply	
assume	a	distribution	to	carry	forward.		Not	only	would	that	bias	our	analysis	with	overt	guesses,	but	it	would	not	
at	 all	 help	 systems	 engineers	 evaluate	 whether	 or	 not	 a	 system	 design	 could	 achieve	 the	 desired	 capabilities	
under	such	different	conditions.	 	Uncertainty	bounds	 for	a	given	design	architecture	or	operational	scenario	do	
not	equate	to	understanding	system	performance	across	different	scenarios.	
	
At	present,	we	do	not	have	a	shared,	empirically	validated	framework	for	understanding	judgment	within	the	AoA	
process	 in	 the	 face	of	deep	uncertainty,	especially	when	 that	uncertainty	 stems	 from	the	 intersection	between	
the	nature	of	the	missions,	the	nature	of	the	threat	environment,	the	physical	environment	itself,	etc.		Instead	of	
selecting	design	alternatives	that	are	“best”	for	one	or	across	a	small	set	of	weakly	defined	futures,	we	need	to	
identify	 designs	 that	 are	 most	 robust	 in	 the	 face	 of	 many	 possible	 but	 likely	 futures.	 	 We	 may	 achieve	 this	
robustness	 from	a	single	design	architecture,	 from	a	product	 family	consisting	of	variations	on	a	base	design	to	
achieve	different	capabilities,	or	from	a	capabilities	portfolio.	
	
Our	 traditional	 approaches	 to	 this	 problem	 follow	 a	 set	 of	 potential	 design	 alternatives	 across	 a	 few	 defined	
mission	 threads	 or	 CONOPS-associated	 stakeholder	 needs.	 	 Sometimes,	 combinatorial	 mission	 threads	 form	
various	timeline	profiles,	and	any	multitude	of	decision	or	real	options	analysis	methods	help	select	alternatives	
with	 the	 “best”	 characteristics.	 	 These	 approaches	 ask	 questions	 such	 as	 “Which	 alternatives	 provide	 the	 best	
value	 to	 stakeholders	 in	 key	 scenarios	 or	 across	 a	 few	 possible	 scenario	 pathways?”	 and	 can	 offer	 valuable	
insights.	 	 But,	 to	 address	 this	 effectively,	 it	 helps	 to	 not	 be	 deeply	 uncertain	 about	 the	 factors	 defining	 those	
futures.		What	we	need	in	the	future	of	Defense	acquisitions	is	to	answer	questions	from	a	different	perspective.		
“Under	what	 circumstances	would	 this	design	alternative	do	well?”	 	 “Under	what	 circumstances	would	 it	 fail?”		
We	need	to	elucidate	operational	limits	for	design	alternatives	to	provide	the	best	insight	to	key	decision	makers.			
	
High-level	concepts	of	different	approaches	that	can	help	address	these	challenges	were	discussed	in	two	interim	
reports	 delivered	 as	 part	 of	 this	 effort:	 “Analysis	 of	 Alternatives	 Roadmap”	 and	 the	 “Cross-scale	 resilience:		
Relating	Systems	of	Systems	to	 Individual	System	Analysis	and	Back	Again”	 (being	completed	as	part	of	 the	SoS	
subtask	of	this	effort,	section	2.4).	
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Publications	and	Links	to	other	Tasks	
	
Concepts	 and	 methods	 in	 this	 subtask	 relate	 strongly	 to	 the	 subtasks	 of	 disparate	 operational	 environments	
(section	2.2)	and	product	family	identification	(section	2.3)	and	will	be	further	discussed	in	those	sections.	
	
Concepts	and	methods	in	this	subtask	also	relate	to	the	software	engineering	and	architecture	effort	(Task	3)	as	
well	as	the	AoA	tool	effort	(Task	7).			
	
This	work	was	submitted	as	a	paper	on	these	matured	methods	and	their	tie-in	to	the	DoD	problem	to	the	INCOSE	
2016	International	Symposium	conference,	which	was	accepted	for	podium	presentation	and	publication	(Sitterle,	
Brimhall,	Freeman,	Balestrini-Robinson,	Ender,	and	Georger,	2016).	
	
In	tandem	with	understanding	the	roadmap	for	modeling	and	analysis	needs	to	support	the	vision	of	ERS	in	DoD	
acquisitions,	 we	 described	 an	 “Analysis	 of	 Alternatives	 Roadmap”,	 which	 was	 codified	 as	 an	 interim	 report	
(Sitterle,	 Balestrini-Robinson,	 Freeman,	 and	 Ender,	 2016).	 	 The	 document	 discusses	 how	 an	 AoA,	 both	 as	 an	
informal	supporting	 tool	and	a	 formal	mandate,	can	mature	to	more	effectively	address	 the	right	 requirements	
questions	needed	by	senior	decision	makers.		Every	AoA	will	be	different	in	terms	of	nuances,	context,	available	
information,	etc.	for	a	given	system	being	evaluated	at	a	specific	point	in	the	Defense	acquisition	system	process.		
Consequently,	 there	 will	 be	 no	 one-size-fits-all	 methodology	 applicable	 to	 all	 AoAs.	 	 The	 roadmap	 therefore	
discusses	major	concepts	vital	to	maturing	AoAs	to	successfully	support	DoD	needs	and	the	goals	of	ERS	relating	
to	 resilient	design	and	a	 resilient	design	process.	 	 It	 further	explains	why	 these	aspects	are	necessary	and	how	
they	will	support	materiel	development	decisions.	
	
The	report	covering	cross-scale	resilience	will	be	discussed	and	referenced	in	the	SoS	subtask,	Section	2.4.	
	

2.2 DISPARATE	OPERATIONAL	ENVIRONMENTS/CONOPS	

Objectives	
	
A	key	challenge	is	to	develop	a	tradespace	in	a	scalable	and	efficient	manner	while	keeping	track	of	the	variations	
in	CONOPS	for	each	engineering	design	alternative.		This	task	is	concerned	with	developing	an	efficient	means	of	
generating	and	keeping	track	of	 the	various	partitions	of	 the	tradespace	that	may	arise	across	different	models	
and	simulations	for	the	engineering	design	alternatives.	This	will	aid	the	identification	and	evaluation	of	product	
families	of	a	given	system	as	compared	to	a	monolithic	version	of	that	engineered	system.	Additionally,	this	task	
will	 be	 concerned	 with	 utilizing	 the	 ERS	 TradeBuilder	 environment	 initiated	 under	 an	 earlier	 effort	 towards	
orchestrating	and	managing	the	execution.			
	
Work	Description	and	Accomplishments	
	
The	efforts	in	this	subtask	focused	on	the	relationship	between	model	development,	tradespace	generation,	and	
decision	 analyses.	 	 Only	 by	 creating	 the	 appropriate	 decision	 space	 can	 we	 begin	 to	 explore	 the	 robustness,	
sensitivity,	 and	 other	 nuances	 associated	 with	 systems	 that	 must	 perform	 across	 multiple	 operational	
environments	and	mission	profiles.	
	
Developing	a	Model.	
One	of	the	first	challenges	of	this	task	was	to	find	an	appropriate	example	model	that	could	serve	as	the	basis	for	
understanding	not	only	added	dimensionality	of	the	analyses	but	also	how	to	define	and	propagate	the	relevant	
data	structures	under	Task	3	 in	ways	that	preserve	scalability,	consistency,	and	ease	of	 intuitive	analyses	across	
the	metadata.		Lacking	such	a	model,	we	developed	one	for	a	fairly	high-level,	notional	Joint	Light	Tactical	Vehicle	
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(JLTV)	like	platform.		Developing	a	model	from	scratch	helped	us	understand	degrees	of	granularity	and	patterns	
of	reusability.	
	
Higher-level	M&S	components	used	 in	early-stage	AoA	evaluations	help	 identify	which	concept	architectures	or	
regions	of	design	space	are	the	most	promising.		Some	design	concepts	are	different	enough	that	they	will	require	
completely	 different	 model	 architectures	 and	 computational	 representations.	 	 It	 is	 frequently	 not	 possible	 to	
analyze	 each	 distinct	 design	 type,	 as	 captured	 in	 distinct	 model	 architectures,	 in	 an	 equivalent	 fashion.	 	 For	
example,	 ‘miles	per	gallon’	 is	not	a	concept	 that	would	apply	 to	a	purely	electric	vehicle.	 	A	higher-level	metric	
such	as	cruise	 range	given	specified	operational	 characteristics,	however,	would	be	comparable.	 	 In	addition	 to	
multiple	architectures	(design	concepts),	different	operational	viewpoints	corresponding	to	different	stakeholder	
needs	are	critical	aspects	that	drive	system	evaluation	and	decision	analysis.	 	Different	operational	environment	
characteristics	will	very	much	impact	fielded	operational	performance.		In	a	computational	evaluation,	this	means	
that	the	model(s)	of	a	system	alone	is	insufficient	to	produce	all	quantitative	system	attributes	important	to	the	
decision	making	process.			
	
Generating	a	 tradespace	 from	various	disparate	models	and	simulations	–	some	representing	 the	system	under	
evaluation	and	others	capturing	different	operational	environment	and	use	characteristics	or	SoS	performance	–	
is	not	a	 trivial	 task	 if	 the	goals	are	 to	achieve	 flexibility,	 scalability	 (often	via	properly	orchestrated	modularity),	
and	efficiency	of	the	process.		For	example,	if	we	delineate	operational	scenarios	into	the	two	parametric	classes	
of	 operational	 environment	 and	 operational	 use,	we	may	 have	 an	 intuitive	 scaffolding	 for	modelers	 to	 specify	
attributes	necessary	to	generate	an	operationally	specific	tradespace.	 	Parts	may	be	reused	and	expanded	upon	
for	 creation	 of	 new	 operational	 scenario	 blocks.	 	 Like	 most	 aspects	 of	 model	 development,	 the	 attributes	 or	
measures	 the	 tradespace	 generation	 is	 intended	 to	 produce	will	 drive	what	 parameters	must	 be	defined	 in	 an	
operational	scenario.	 	Any	number	of	operational	scenarios	may	be	defined	in	this	way	depending	on	the	scope	
and	needs	of	the	analysis.			
	
Scenarios	may	be	 interested	 in	 the	same	output	measures	 (e.g.,	cruise	range)	but	 impose	different	objective	or	
threshold	 levels	or	require	operation	 in	vastly	different	environmental	profiles	 that,	 in	 turn,	alter	 the	measured	
performance.		(This	is	precisely	what	the	Needs	Context	discussed	in	the	previous	section	is	designed	to	address.)		
Similarly,	operational	scenarios	may	be	interested	in	entirely	different	output	measures	regardless	of	operational	
environment,	 imposing	requirements	not	present	 in	other	scenarios.	 	How	to	 implement	these	scenario	aspects	
then	 relates	 directly	 to	 modularity	 of	 the	 parameter	 specification,	 the	 modularity	 of	 the	 evaluation	 function	
components	(i.e.,	 the	model	constraints),	and	hence	the	degree	of	reusability	of	these	specifications	and	model	
components	for	additional	scenarios	and/or	tradespace	generation.			
	
In	 the	course	of	using	our	 JLTV	development	 to	explore	some	of	 these	questions,	we	determined	 that	a	purely	
atomic	level	of	granularity	(i.e.,	each	equation	is	captured	as	its	own	block)	is	not	only	a	painful,	time	consuming	
experience,	it	creates	too	many	opportunities	for	errors	simply	from	human	input.		There	is	no	magic	answer	for	
what	constitutes	the	appropriate	level	of	granularity;	that	is	really	an	engineering	modeling	decision	informed	by	
experience	and	an	understanding	of	the	larger	problem	context.		However,	the	delineation	of	parametric	classes	
into	 ‘system’,	 ‘operational	 environment’,	 and	 ‘operational	 use’	 is	 intuitive	 and	 highly	 flexible	 in	 terms	 of	 being	
reusable	and	changeable	to	future	needs.		We	need	to	mature	this	understanding	in	the	next	phase	of	the	work,	
specifically	how	the	abstractions	will	be	specified	in	the	ERS	TradeBuilder	tool.		This	will	directly	impact	not	only	
how	effectively	 the	patterns	may	be	 implemented	and	executed	 in	a	 computational	environment	but	also	how	
intuitively	they	are	perceived,	understood,	and	employed	by	an	analyst	in	the	development	and	exploration	of	a	
tradespace	for	an	AoA.			
	
Comparison	of	Model	Types.	
The	notional	JLTV	models	a	class	of	military	ground-transport	vehicles	that	are	meant	to	part-replace	the	Humvee.	
Inputs	 to	 the	 model	 include	 physical	 dimensions,	 engine	 parameters,	 transmission	 properties,	 operating	
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conditions,	notional	armament	add-ons,	crew	capacity,	and	several	other	related	inputs.		There	are	a	total	of	24	
system	specific	design	 variables	with	3	 additional	 variables	pertaining	 to	 the	operational	 environment	as	 it	will	
impact	the	notional	JLTV	performance	in	some	areas	and	7	variables	related	to	how	the	platform	will	be	used	in	
operations.	 	The	model	 returns	attributes	such	as	velocity,	acceleration,	payload	capacity,	maneuverability,	and	
transportability.	 	 Some	 attributes	 are	 combined	 into	 higher-level	 characterizations.	 	 For	 example,	
‘gross_maneuverability’	 is	 defined	 by	 several	 performance	 characteristics	 such	 as	 velocity	 around	 a	 curve,	
acceleration	time,	etc.		In	all,	it	is	a	simple	model	where	inputs	(including	all	system	design	variables)	are	mapped	
directly	to	output	parameters	through	simple	physics	models.	
	
We	also	had	a	notional	Single	Main	Rotor	(SMR)	Helicopter	model	for	comparison,	which	sizes	an	SMR	vehicle	for	
a	given	mission	specification.		An	SMR	helicopter	is	the	most	common	kind,	such	as	the	UH-60	Blackhawk.	Using	
inputs	that	define	the	rotor	system	shape	and	efficiencies,	engine	performance	parameters,	crew	requirements,	
and	mission	ranges,	payload,	and	hover	times	the	model	returns	the	vehicle	weight	breakdown,	additional	rotor	
parameters,	engine	power,	and	cost.		The	SMR	model	differs	from	the	notional	JLTV	model	in	a	key	area,	which	is	
that	design	requirements	are	 inputs	 to	 the	model.	 	This	 is	due	 to	 the	nature	of	 the	sizing	process	of	aerospace	
vehicles,	which	requires	a	mission	definition	in	order	to	define	an	appropriate	vehicle	for	that	mission.	While	it	is	
possible	to	define	a	vehicle	without	a	sizing	mission	and	then	analyze	what	missions	 it	 is	capable	of,	using	both	
model	 inputs	 and	 outputs	 as	 attributes	 that	 can	 be	 values	 supplies	 this	 effort	 with	 more	 varied	 examples	 of	
tradespace	data.		The	SMR	model	produces	a	tradespace	where	data	is	highly	correlated,	making	some	analyses	
more	difficult	to	interpret	as	we	shall	see	in	Section	2.3.		
	
Generating	a	Tradespace.	
Once	models	are	defined	and	all	 inputs	and	their	ranges	are	specified,	we	need	to	generate	a	tradespace.	 	This	
occurs	 when	 we	 use	 some	 approach	 to	 sample	 the	 inputs	 across	 their	 ranges,	 creating	 unique	 combinations	
across	the	multidimensional	descriptions	that	feed	through	the	M&S	components	to	produce	associated	output	
(attribute)	vectors.		The	prevailing	paradigm	at	present	is	to	generate	thousands	or	millions	of	design	alternatives,	
enumerated	 by	 their	 unique	 design	 variable	 vectors	 and	 stored	 along	 with	 their	 output	 characteristics	 and	
performance	attributes	 in	a	database	 (i.e.,	 the	 tradespace),	 and	 then	perform	multi-objective	or	other	decision	
analysis	founded	on	expressions	of	stakeholder	preferences	to	determine	the	“best”	set	of	candidate	designs.			
	
The	reason	the	tradespace	generation	is	so	paramount	to	this	problem	is	that	is	forms	the	foundation	on	which	
decision	analysis	–	typically	multi-objective	–	is	performed.		Preferred	criteria	are	specified,	valued,	and	weighted	
according	 to	stakeholder	priorities.	 	A	 typical	output	 from	this	process	 is	a	multi-attribute	additive	value	 (MAV)	
measure	which	may	be	evaluated	as	a	function	of	another	MAV	or,	as	is	more	common,	cost	associated	with	each	
design	alternative.	 	The	entire	tradespace	is	transformed	to	a	functional	view	of	MAV,	and	the	“best”	candidate	
designs	are	identified	based	on	their	Pareto	efficiency	across	the	space.		When	the	notion	of	Pareto	efficiency	is	
applied	to	the	selection	of	alternatives,	each	option	is	first	assessed	under	multiple	criteria	and	then	a	subset	of	
options	is	identified	with	the	property	that	no	other	option	can	categorically	outperform	any	of	its	members.		A	
design	 alternative	 is	 considered	 to	 be	 on	 the	 Pareto	 frontier	 if	 no	 other	 point	 is	more	 preferred.	 	 Dominated	
alternatives	are	those	 for	which	another	candidate	exists	 that	 is	equal	or	better	 in	all	attributes	contributing	to	
the	measure	and	strictly	better	in	at	least	one.		A	Pareto	efficient	criteria	for	selection	of	that	set	rests	upon	the	
foundational	assumptions	of	monotonicity	and	independence	in	the	valuation	for	each	attribute	that	contributes	
to	the	MAV	functional	relationship.		The	Pareto	Frontier	is	a	set	produced	by	these	integrated	tradespace-decision	
analysis	 processes	 that	 is	 seen	 to	 be	 the	 “best”	 set	 of	 alternatives.	 	 Further	 analyses	 are	 often	 performed	 to	
determine	the	effects	of	uncertainty	on	the	concept	of	whether	an	alternative	is	dominated	across	the	range	of	its	
uncertainty	distribution,	and	therefore	might	affect	the	overall	decision	on	its	inclusion	in	a	“best”	set.				
	
The	 Pareto	 Frontier	 is	 critical	 to	 the	 decision	 making	 process	 and	 its	 conclusions.	 	 How	 the	 tradespace	 is	
generated	and,	specifically	how	well	points	are	generated	from	the	design	variables	that	will	occupy	the	Pareto	
Frontier,	can	consequently	create	significant	differences	in	any	a	posteriori	analysis.	
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A	very	common	means	of	sampling	the	 input	design	variable	 levels	 to	produce	a	 tradespace	 is	 Latin	Hypercube	
Sampling	(LHS).		LHS	is	a	type	of	stratified	sampling	that	controls	the	way	that	random	samples	are	generated	for	
a	 probability	 distribution.	 	 The	 method	 controls	 the	 sampling	 of	 each	 distribution	 separately	 to	 provide	 even	
coverage	 for	 each	distribution	 individually,	 but	 does	not	 control	 the	 sampling	of	 combinations	of	 distributions.		
When	sampling	a	function	of	N	variables,	the	range	of	each	variable	is	divided	into	M	equally	probable	intervals.	
M	sample	points	are	then	placed	to	satisfy	the	Latin	hypercube	requirements,	and	the	number	of	divisions	(M)	are	
equal	for	each	variable.			
	
Evolutionary	algorithms	 (EAs)	 represent	a	 completely	different	approach	 to	 sampling	across	design	variables	 to	
generate	 a	 tradespace.	 	 The	 objective	 of	 these	 algorithms	 is	 to	 improve	 the	 adaptive	 fit	 of	 a	 population	 of	
candidate	 solutions	 to	 a	 Pareto	 frontier	 constrained	 by	 a	 set	 of	 objective	 functions	 thereby	 finding	 as	 many	
Pareto-optimal	solutions	as	possible.		Since	EAs	work	with	a	population	of	solutions,	a	simple	EA	can	be	extended	
to	maintain	a	diverse	 set	of	 solutions	and	 find	multiple	Pareto-optimal	 solutions	 in	a	 single	 simulation	 run.	 	An	
example	 is	 the	 Non-dominated	 Sorting	 Genetic	 Algorithm	 II	 (NSGA-II)	 algorithm.	 	 The	 algorithm	 uses	 an	
evolutionary	 process	 with	 surrogates	 for	 evolutionary	 operators	 including	 selection,	 genetic	 crossover,	 and	
genetic	mutation.	The	population	 is	 sorted	 into	a	hierarchy	of	sub-populations	based	on	the	ordering	of	Pareto	
dominance.	 Similarity	between	members	of	each	 sub-group	 is	evaluated	on	 the	Pareto	 front,	 and	 the	 resulting	
groups	and	similarity	measures	are	used	to	promote	a	diverse	front	of	non-dominated	solutions.	
	
A	 key	 difference	 is	 that	 Designs	 of	 Experiments	 (DoE),	 including	 LHS,	 require	 no	 a	 priori	 understanding	 of	
preferences	to	sample	the	design	variables	and	thereby	create	a	tradespace.		In	contrast,	EAs,	including	the	NSGA-
II	algorithm,	must	either	assume	or	be	based	on	a	priori	expression	of	preferences	and	constraints.		The	algorithm	
–	and	this	applies	to	all	multi-objective	optimization	algorithms	–	first	requires	a	definition	of	a	decision	hierarchy	
and	preferences.	 	 In	 this	work,	 the	multi-objective	decision	 construct	 is	 captured	 as	 a	Needs	Context.	 	Using	 a	
Needs	Context	to	determine	the	MAV	of	an	alternative	along	with	the	cost,	multi-objective	optimization	searches	
for	a	Pareto	Frontier	that	trades	between	the	MAV	and	cost.		The	search	results	in	a	set	of	alternatives	that	are	on	
or	 near	 the	 solved	 Pareto	 frontier.	 	 The	 alternatives	 do	 not	 span	 a	 hypercube	 like	 they	 do	 for	 traditional	
tradespace	methods	like	design	of	experiments.		Instead	the	candidate	designs	will	populate	inside	a	hypervolume	
that	 surrounds	 the	 Pareto	 Frontier	 and	 whatever	 other	 alternatives	 were	 stored	 by	 the	 algorithm.	 	 This	
hypervolume	can	be	of	any	shape	and	size.			
	
Algorithmic	generation	of	Pareto	Frontiers	results	 in	a	smaller	 tradespace	than	 is	 found	using	the	DoE	methods	
and,	because	it	 is	based	on	the	objective	preferences,	 is	suitable	only	for	that	Needs	Context	as	defined.	 	 It	will	
not	be	suitable	for	other	Needs	Contexts.	For	example,	a	LHS	generated	tradespace	will	typically	have	a	surrogate	
model	fit	to	it	for	explorations	of	design	alternatives.	 	An	NSGA-II	tradespace	can	still	have	a	model	fit	to	it,	but	
since	the	tradespace	spans	a	smaller	hypervolume	any	exploration	of	design	alternatives	outside	the	hypervolume	
constitutes	extrapolation	and	therefore	retains	no	guarantees	of	goodness	of	fit	or	other	standard	measures.		So,	
while	a	LHS	approach	creates	an	entire	tradespace,	including	those	designs	that	are	not	“good”,	the	EA	methods	
focus	the	sampling	effort	on	creating	a	tradespace	that	is	richer	near	to	the	Pareto	Frontier.	
	
When	 a	 tradespace	 is	 generated	 from	 a	 space-filling	 design,	 such	 as	 a	 Latin	 Hypercube,	 the	 data	may	 change	
enough	that	the	analysis	of	the	Pareto	Frontier	changes	significantly	when	compared	to	tradespace	data	that	 is	
algorithmically	generated	such	as	with	NSGA-II.		The	number	of	points	can	change,	resulting	in	fewer	alternatives	
in	the	Pareto	Frontier,	and	the	location	of	those	points	in	the	decision	space	can	change.		We	will	demonstrate	the	
significance	 of	 these	 dynamics	 in	 the	 following	 sections.	 	 The	 take	 away,	 however,	 is	 that	 analysts	 should	 not	
assume	 that	 a	 tradespace	 (and	 hence	 its	 set	 defined	 by	 the	 Pareto	 Frontier	 of	 some	 decision	 space)	 is	 (a)	
necessarily	the	true	frontier	possible	from	the	design	space,	or	(b)	an	unambiguous	and	universal	representation	
of	 drivers	 across	 the	 decision	 space.	 	 This	 provides	 a	 strong	 motivation	 for	 combining	 algorithms	 with	 high	
performance	computing	such	that	high	quality	data	is	available	to	the	analyst.		In	some	instances,	tradespace	data	
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may	be	all	that	is	available	with	no	recourse	to	adapt	and	improve	the	sampling.		In	these	cases,	the	analyst	must	
take	care	about	conclusions	regarding	candidate	designs,	understanding	that	the	tradespace	frontier	may	not	be	
the	“true”	frontier.	
	
Decision	Analysis	and	a	Soft	Pareto	Frontier.	
Formal	 methods	 such	 as	 multi-objective	 decision	 analysis	 (MODA)	 provide	 the	 scaffolding	 for	 a	 traceable,	
justifiable	 basis	 for	 reducing	 a	 set	 of	 options	 for	 further	 analysis.	 	 There	 is	 a	wealth	 of	 information	 on	 various	
decision	 analysis	 techniques,	 their	 application,	 and	 example	 problems	 in	 the	 literature.	 	 One	 resource	 that	 is	
particularly	 relevant	 to	 the	DoD	AoA	process	 is	 the	Handbook	of	Decision	Analysis	 (Parnell,	 Bresnick,	 Tani,	 and	
Johnson,	 2013).	 	 This	 reference	 includes	 technical	 and	 soft	 aspects	 of	 decision	 analysis,	 qualitative	 and	
quantitative	techniques,	and	incorporates	these	approaches	into	case	studies	by	way	of	example.	
	
In	traditional	decision	analysis	of	tradespace	data,	the	context	of	an	evaluation	is	usually	based	on	the	whole	of	a	
specific	instantiation	of	a	tradespace.		Yet	an	ERS	perspective	requires	the	maturation	of	a	more	holistic	approach	
toward	integrating	the	whole	tradespace	analytical	view	with	analyses	targeted	toward	the	“best”	set	of	designs.		
For	small	sets	of	system	design	alternatives,	it	may	be	quite	feasible	to	evaluate	various	measures	of	performance	
feeding	 resiliency	measures	 (in	 turn	 a	higher-level	MOP	or	MOE)	 for	 all	 design	 alternatives.	 	As	 the	number	of	
design	 alternatives	 increases,	 say	 to	 10,000	 or	 1,000,000	 or	more,	 the	 global	 versus	 local	 treatment	 becomes	
more	complicated.	 	Some	sensitivity	analyses	may	need	to	be	global,	performed	across	the	entire	tradespace	to	
reduce	a	set	of	parameters	or	attributes	under	evaluation.		In	other	analytical	treatments,	a	global	approach	can	
compromise	 insights	 that	 may	 be	 specific	 to	 the	 “better”	 design	 alternatives	 with	 bias	 from	 the	 “poor”	
alternatives	 as	well	 as	 inhibit	 the	 ability	 to	 scale	 both	 computationally	 and	 visually.	 	 (This	 is	 especially	 true	 for	
component-based	 tradespaces.)	 	 Focusing	 some	 aspects	 of	 the	 analysis	 on	 a	 more	 tailored,	 decision-oriented	
space,	a	“local”	data	set,	will	enable	deeper	insights	regarding	sensitivity,	uncertainty,	and	correlations	across	the	
“best”	set	of	designs.			
	
Specifically,	instead	of	evaluating	only	a	Pareto	frontier	of	design	alternatives	or	an	entire	tradespace,	we	identify	
a	 ‘soft	 Pareto	 set’	 or	 ‘soft	 Pareto	 frontier’	 (sPF)	 of	 alternatives.	 	 This	 set	 serves	 as	 the	 basis	 for	 additional	
explorations	and	analyses	that	can	add	great	 insight	to	the	decision	making	process.	 	There	are	some	methods,	
e.g.,	 variance-based	measures	 that	may	be	pointless	when	applied	 to	a	 Latin	hypercube	generated	 tradespace.		
But,	when	the	design	alternatives	are	“filtered”	according	to	a	view	of	MAV,	a	set	including	and	off	of	the	Pareto	
Frontier	will	have	certain	characteristics	(e.g.,	covariance)	that	are	meaningful.		
	
A	 tradespace	of	alternatives	can	come	from	many	data	sources	of	vary	quality	and	quantity.	These	 include	test	
data,	designs	of	experiments,	and	a	wide	variety	of	optimization	and	search	algorithms.	Therefore,	any	analysis	
aimed	 at	 understanding	 drivers	within	 the	 decision	 space	 (i.e.,	 the	MAV	 context)	 should	 be	 flexible	 enough	 to	
accommodate	the	available	data.		Any	statistical	test,	regression,	or	other	mathematical	exploration	of	a	dataset	
benefits	 from	having	more	data	available	to	 it.	 	Additionally,	no	model	or	data	 is	completely	accurate,	meaning	
that	any	points	on	a	Pareto	Frontier	are	subject	 to	uncertainty.	Therefore	we	want	to	 include,	as	much	data	as	
possible,	 but	 the	 amount	 of	 data	 available	 on	 a	 strict	 Pareto	 Frontier	may	 not	 provide	 enough	 information	 to	
determine	Pareto	Frontier	tradeoffs.	
	
We	propose	using	an	sPF,	which	 is	created	by	allowing	a	defined	 level	of	dominated	points	 to	enter	the	Pareto	
Frontier.	This	can	be	done	by	either	specifying	the	number	of	successively	non-dominated	frontier	by	removing	
the	non-dominated	points	and	repeating	the	Pareto	Sorting,	or	by	altering	the	standard	domination	definition	to	
include	a	region	where	points	are	still	considered	non-dominated.		Recalling	the	definition	of	a	Pareto	Frontier,	P,	
of	a	set	of	points,	Y:	

𝑃 𝑌 = 𝑦 ∈ 𝑌	 	 𝑦' ∈ 𝑌: 𝑦' ≻ 𝑦, 𝑦' ≠ 𝑦 = ∅}	

The	dominance	relation	over	the	p-dimensional	Pareto	Frontier	is	originally	strict	(assuming	minimization):	
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𝑦' ≻ 𝑦	 ⇔ 𝑦/' ≤ 𝑦/	∀𝑖 ∈ {1, … , 𝑝}	

The	soft	frontier	dominance	relation	is	relaxed	by	some	margin	in	each	dimension,	ε:	

𝑦' ≿ 𝑦	 ⇔ 𝑦/' ≤ 𝑦/ − 	𝜖/	∀𝑖 ∈ {1, … , 𝑝}	

A	point	is	then	only	said	to	softly	dominate	(symbolized	as	a	weak	preference)	if	it	is	at	least	better	by	ε	than	all	
other	points	in	the	data	in	each	output	dimension.	An	alternative	to	the	soft	dominance	is	to	progressively	solve	
for	the	strict	frontier,	remove	it	from	the	data,	and	repeat.	Then	one	can	select	n	of	the	first	frontiers	to	gather	
enough	data.	 In	 testing,	n	=	5	was	a	good	starting	point.	The	advantage	to	using	the	soft	dominance	relation	 is	
that	the	degree	of	softness	is	defined	in	terms	of	the	outputs	and	is	constant	for	any	MAV	as	a	function	of	cost	of	
a	tradespace.	Using	a	number	of	frontiers	can	result	in	larger	or	smaller	distances	from	the	strict	frontier	between	
different	MAV	functions.		A	comparison	of	a	strict	Pareto	Frontier	versus	a	sPF	is	shown	in	Figure	4	for	a	notional	
SMR	Helicopter	model	tradespace	that	was	generated	by	a	Latin	hypercube	design	and	an	NSGA-II	algorithm.		The	
sPFs	retain	the	same	shape	as	their	strict	frontier	but	with	the	benefit	of	more	data.	
	
	

	
Figure	4.	Illustration	of	a	Pareto	Frontier	compared	to	a	Soft	Pareto	Frontier	for	Latin	hypercube	and	NSGA-II	generated	

tradespace	data	

	
	
Importantly,	 note	 also	 that	 the	 algorithmically	 generated	 frontiers	 dominate	 the	 Latin	 hypercube	 generated	
frontiers.		This	underscores	the	discussion	in	the	previous	section	regarding	the	need	to	mature	how	we	generate	
tradespace	 data	 that	 will	 serve	 as	 the	 foundation	 for	 additional	 design-to-decision	 exploration,	 analyses,	 and	
creation	of	new	insights.	
	
The	Operational	Needs	Context	described	under	the	uncertainty	subtask	directly	relates	to	these	concepts	since	
its	application	can	alter	which	alternatives	are	in	that	set	via	the	penalty	function.		It	may	be	used	after	a	different	
analytical	treatment	narrows	the	alternatives	or	attributes	thereof,	or	it	may	be	used	as	a	precursor,	reducing	the	
“input	tradespace”	to	the	next	analytical	 treatment	to	a	more	rational	set	of	designs.	 	This	may	be	done	 in	any	
number	of	ways:	 taking	a	 top	 set	of	designs	 including	and	off	of	 the	Pareto	 front	as	described	earlier,	 taking	a	
specified	top	percentage	of	alternatives	with	the	highest	values	(irrespective	of	cost),	etc.	 	Which	way	to	take	a	
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“best	set”	to	propagate	to	the	next	analytical	processes,	depends	entirely	on	the	needs	of	the	next	treatment	and	
the	overall	process.			
	
Contextual	Insight.	
The	Needs	Context	is	simply	a	way	to	structure	and	represent	a	multi-objective	or	multi-criteria	decision	analysis	
problem,	where	preferred	 attributes	 are	 valued	 according	 to	 some	 threshold	 and	objective	 levels	 defined	by	 a	
stakeholder	 (and	 independent	of	 the	 tradespace	 range),	prioritized,	 and	used	 to	 create	a	decision	 space.	 	 Each	
needs	context	may	represent:	

i. Different	stakeholders	with	different	or	even	competing	preferences	for	system	attributes,	how	they	
are	prioritized,	and/or	how	they	are	valued	

ii. Changes	in	requirements	over	time	or	preferences	of	a	stakeholder	or	stakeholders	across	time	
iii. Changing	 operational	 needs	 that	 necessitate	 different	 performance	 objectives,	 priorities,	 or	

valuations	in	parallel	or	in	series	

The	decision	space	enabled	by	a	Needs	Context	approach	is	multidimensional.		 	 	Any	number	of	Needs	Contexts	
may	be	specified,	and	they	may	stem	from	the	same	or	even	different	decision	trees	that	capture	the	objective	
space	and	its	hierarchy	for	that	stakeholder	or	context.	
	
It	is	the	third	bullet	above	that	directly	relates	to	the	concept	of	different	operational	environments	and	CONOPS	
discussed	 at	 the	 beginning	 of	 this	 section.	 	 The	 performance	 characteristics	 in	 one	 environment	 may	 differ	
substantially	from	the	same	performance	characteristics	in	another.		A	system	may	be	envisioned	for	one	use	such	
as	 transport	 in	 one	mission	 profile	 and	 its	 ability	 to	 offensively	 help	 control	 an	 area	 of	 responsibility	 via	 fires	
capability	in	another.		Resilience	in	keeping	with	the	ERS	vision	will	be	characterized	in	part	by	a	system	that	can	
perform	to	its	objectives	across	a	wide	range	of	operational	contexts	through	either	its	initial	design	or	flexibility	
to	be	modified	in	a	way	that	adapts	to	the	changing	needs.	
	
The	efforts	in	this	subtask	described	prior	to	this	point	focus	on	model	structures,	reusable	patterns	that	can	be	
carried	through	in	appropriate	data	structures	to	support	downstream	analyses,	generation	of	a	tradespace	and	
particularly	 a	well-representative	Pareto	 frontier	 as	we	 transform	 from	 the	design	 space	 to	 the	decision	 space,	
and	the	value	of	using	a	soft	Pareto	frontier	set	to	support	analyses	and	further	exploration.	All	of	these	concepts	
are	 vital	 if	 we	 are	 to	 effectively	 explore	 the	 impact	 of	 varying	 operational	 environments	 and	 CONOPS	 on	 our	
decision	space	for	candidate	system	designs.	
	
The	 next	 step	 is	 to	 articulate	what	 an	 analyst	might	 do	with	 a	 collection	 of	 sPFs	 as	 defined	 by	 various	 Needs	
Contexts.	 	 Figure	 5	 illustrates	 three	 main	 actions	 that	 combine	 these	 sets	 in	 more	 or	 less	 restricted	 ways	 to	
provide	 a	 set	 from	which	 to	 advance	 the	 analysis.	 	 These	 concepts	will	 form	 the	 basis	 for	 evaluating	 a	 system	
across	different	operational	environments	and/or	CONOPs,	each	of	which	may	be	captured	in	a	different	Needs	
Context.		In	other	cases,	the	Needs	Context	may	be	the	same	but	the	variation	of	operational	context	will	create	
additional	performance	parameters	in	the	tradespace.		For	example,	uphill	speed	carrying	a	payload	will	differ	for	
a	 notional	 JLTV	 in	 dry	 sandy	 conditions	 compared	 to	 snowy	 conditions.	 	 The	 physics	 change.	 	 This	 can	 be	
represented	by	having	different	uphill	speed	performance	parameters	that	correspond	to	each	environment	(i.e.,	
two	columns	in	a	tradespace).		The	same	combinatory	approaches	if	we	express	these	as	distinct	Needs	Contexts	
apply.		
	
The	goals	are	 to	expand	and	mature	how	we	explore	and	analyze	our	decision	space	 to	help	answer	questions	
such	as	“which	design	alternatives	are	 least	sensitive	to	variation	 in	the	 input	parameters?”	and	“How	sensitive	
are	 our	 valued	 parameters	 (defining	 a	 Needs	 Context)	 to	 (a)	 environment	 variation?	 or	 (b)	 operational	 use	
characteristic	variation?”	
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Figure	5.		How	Needs	Contexts	may	be	combined	to	further	analytical	exploration	of	the	decision	space	

	
Publications	and	Links	to	other	Tasks	
	
Concepts	and	methods	in	this	subtask	relate	strongly	to	the	subtasks	of	uncertainty	(Section	2.1),	product	family	
identification	(Section	2.2),	and	SoS	evaluation	(Section	2.4).	
	
Concepts	and	methods	in	this	subtask	also	relate	to	the	software	engineering	and	architecture	effort	(Task	3)	as	
well	as	the	AoA	tool	effort	(Task	7).			
	

2.3 PRODUCT	FAMILY	IDENTIFICATION	AND	EVALUATION	

Objectives	
	
Frequently,	developing	a	product	family	for	an	engineered	system	is	a	more	cost	effective	and/or	better	way	to	
meet	the	disparate	operational	 requirements	of	 the	end	users.	 	This	 task	will	 investigate	maturing	the	previous	
analytical	concepts	of	Broad	Utility	 (via	 the	Needs	Context)	and	Engineering	Flexibility	 to	help	 identify	potential	
product	families	of	systems.		We	will	explore	the	potential	identifying	a	single	system	that	strives	to	meet	multiple	
needs	 to	a	proposed	product	 family	and	methods	by	which	we	may	do	so.	The	overriding	question	that	will	be	
answered	is	“can	we	identify	feasible	sets	of	designs	in	terms	of	potential	product	families	(or	clusters	of	product	
family	alternatives)?”		
	
	
Work	Description	and	Accomplishments	
	
Identifying	Drivers.			
The	 efforts	 in	 this	 subtask	 are	 really	 about	 identifying	 drivers.	 	What	 key	 attributes,	 dynamics,	 etc.	 are	 driving	
which	design	alternatives	are	considered	to	be	the	“better”	alternatives	by	decision	analysis?		What	similar	design	
variables	are	driving	candidate	designs	in	a	“good”	set	of	alternatives	to	be	classified	as	similar	systems	that	may	
comprise	 a	 product	 family?	 	 Which	 requirements	 are	 dominating	 the	 overall	 valuation	 in	 the	 decision	 space,	
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resulting	 in	a	clear	bias	 toward	system	designs	with	specific	architectures	of	component	characteristics?	 	There	
may	 be	 other	 drivers	 biasing	 the	 decision	 space	 as	 well	 from	 specific	 technology	 component	 selection	 to	 a	
prioritization	of	one	stakeholder’s	needs.			
	
The	key	to	providing	actionable	insights	to	key	decision	makers	is	not	simply	to	articulate	performance	capabilities	
as	they	meet	requirements	but	to	discover	what	characteristics	are	driving	the	decision	outcomes,	the	very	nature	
of	the	Pareto-efficient	decision	space.	
			
Of	all	the	questions	that	could	be	asked,	this	effort	focused	on	two	distinct	but	highly	related	questions:	

i. Which	requirements,	expressed	as	objective	preferences	 in	a	Needs	Context,	are	driving	the	cost	across	
the	preferred	set	of	alternatives?	

ii. Can	we	identify	groups	of	similar	designs	across	a	preferred	set	of	alternatives	that	may	be	similar	enough	
to	form	the	basis	of	a	product	family,	thereby	meeting	diverse	needs	more	effectively?	

Meeting	 disparate	 operational	 needs	 more	 cost	 effectively	 than	 a	 monolithic	 system	 solution	 is	 the	 primary	
reason	 product	 families	 emerge	 from	 an	 acquisitions	 process.	 	We	 are	 striving	 to	 help	 identify	 that	 possibility	
earlier	in	the	design	phase.		This	work	builds	directly	from	the	previous	subtask,	especially	the	context-dependent	
generation	and	identification	of	an	sPF.	
	
In	 the	 discussion	 that	 follows,	 we	 will	 first	 address	 these	 questions	 separately	 and	 then	 combine	 their	
commonalities	into	a	holistic	picture.	
	
Identifying	Drivers	–	Requirements-to-Cost.	
A	GAO	report	on	challenges	associated	with	AoAs	found	many	programs	begin	without	a	sound	match	between	
requirements	 and	 the	 resources	 needed	 to	 achieve	 them	 (U.S.	 Government	 Accounting	Office,	 2009).	 	 That	 is,	
these	historical	programs	entered	the	acquisition	process	with	requirements	that	were	not	fully	understood,	cost	
and	 schedule	 estimates	 that	 were	 based	 on	 optimistic	 assumptions,	 and	 a	 lack	 of	 sufficient	 knowledge	 about	
technology,	design,	and	manufacturing.	 	Because	 the	maturation	of	 requirements	was	performed	 in	a	 separate	
process	 that	was	not	well	 connected	 to	 the	evaluation	of	alternatives,	a	holistic	evolution	of	design	alternative	
selection	 and	 refinement	 alongside	 increasing	 technical	 knowledge	 and	 requirements	 compromises	 and	
refinement	was	not	possible.		In	turn,	this	resulted	in	poor	cost,	schedule,	and/or	performance	outcomes.	
	
Motivated	 by	 this	 discussion	 and	 by	 any	 number	 of	 presentations	 given	 by	 University	 of	 Southern	 California	
Professor	Dr.	Barry	Boehm	 in	which	he	 relates	 a	 stakeholder	 finally	understanding	how	much	a	 requirement	 is	
costing	 the	 program	and	 coming	 to	 the	 conclusion	 “it’s	 not	 a	 requirement	 if	we	 can’t	 afford	 it”,	we	 sought	 to	
identify	which	requirements	(expressed	a	preference	objectives	defining	a	Needs	Context)	are	most	responsible	
for	 driving	 costs	 of	 the	 alternatives	 identified	 as	 “best”	 options.	 	While	 there	 is	 a	 lot	 of	 attention	 paid	 to	 the	
generation	of	Pareto-optimal	alternatives,	 less	attention	 is	paid	 to	understanding	what	drives	 the	value	vs	 cost	
trade-off	on	the	frontier.	
	
Here	 we	 will	 re-specify	 a	 MAV,	 the	 weighted	 sum	 of	 𝑛	 valued	 attributes,	 to	 clearly	 show	 the	 functional	
dependency	of	the	value	function	portion	of	the	equation:	

𝑀𝐴𝑉 = 𝑤/𝑣(𝑦/, 𝑡/, 𝑣B/, 𝑜/)
E

/FG

	

Where:	
𝑦 = 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	
𝑤 = 𝑣𝑎𝑙𝑢𝑒	𝑤𝑒𝑖𝑔ℎ𝑡	
𝑡 = 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	
𝑣B = 𝑣𝑎𝑙𝑢𝑒	𝑎𝑡	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	
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𝑜 = 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	
𝑣 = 𝑣𝑎𝑙𝑢𝑒	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	

While	 the	MAV	 is	 fully	 defined	by	 the	 value	 functions	 and	 the	 feasibility	 of	 attribute	 combinations,	 the	 cost	 is	
driven	 by	 the	 attributes	 and	 the	 design	 properties	 of	 the	 alternatives.	 The	 relationship	 between	 cost	 and	
attributes	 is	 defined	by	 the	underlying	 variable	 relationships	 (i.e.,	 the	 “physics”)	 of	 the	 alternatives	 and	not	by	
pre-defined	value	functions.	This	relationship	may	not	be	straightforward,	depending	on	the	models	or	data	used	
to	 generate	 Pareto-optimal	 points.	 The	 cost-attribute	 relationship	 is	 made	 more	 complicated	 by	 the	 down-
selection	to	alternatives	that	meet	certain	MAV	criteria.		
	
A	significant	challenge	when	using	data	from	an	sPF	is	that	the	inputs	to	the	MAV	as	a	function	of	cost	relationship	
do	 not	 follow	 a	 1-to-1	 equivalence.	 	 There	may	 be	many	 designs	where	 the	 attributes	 defined	 in	 the	 decision	
analysis	problem	(i.e.,	a	Needs	Context)	are	at	or	above	objective	levels,	just	as	there	may	be	many	designs	at	or	
below	 threshold	 levels.	 	 This	 creates	 a	1-to-many	 relationship	 from	 the	 inputs	 (raw	 levels	of	 each	attribute)	 to	
outputs	(valuations	of	those	attributes	defined	by	the	value	functions)	that	is	not	due	to	any	stochastic	effects	in	
the	model.	 	 These	 regions	 of	 an	 sPF	 are	 therefore	 very	 difficult	 to	 analyze	 using	 any	 type	 of	method	 such	 as	
regression	that	thrives	on	a	more	1-to-1	relationship	dynamic.		
	
The	MAV	as	a	function	of	cost	decision	space	obfuscates	the	attribute-to-cost	relationship	due	to	utility	function	
aggregation	and	valuation	 thresholding.	 	 Figure	6	 illustrates	a	notional	attribute	 shown	as	being	valued	 linearly	
before	the	objective	 level	together	with	an	assumed	example	relationship	of	cost	as	a	quadratic	function	of	the	
attribute.	Also	shown	are	two	2nd-order	 linear	model	fits	of	Cost	=	f(attribute)	and	f(attribute	value).		 	The	large	
‘column’	 of	 higher	 cost	 points	 causes	 a	 regression	 to	 over-emphasize	 the	 relationship	 between	 the	 cost	 and	
attribute	 values.	 The	 same	 ‘objective	 concentration’	 phenomenon	 occurs	 below	 the	 threshold,	 so	 valued	
attributes	can	exhibit	both	objective	and	threshold	concentration.		In	a	single	dimension,	this	is	easily	remedied	by	
ignoring	the	values	below	threshold	and	above	the	lowest-cost	max-value	point.		Doing	so	forms	a	perfect	fit	since	
we	have	 restricted	 the	 values	 to	be	only	 in	 the	monotonically-transformed	 region	of	 the	 value	 function.	When	
moving	to	higher	dimensions,	though,	points	above	the	objective	value	cannot	be	discarded.	This	is	because	in	a	
MAV	it	is	possible	to	have	highly	valued	points	that	are	at	their	objective	value	in	many	attributes,	but	not	yet	at	
objective	in	others.	Depending	on	the	physics	underlying	the	points,	the	realization	of	high	value	in	one	attribute	
may	necessitate	high	cost,	thus	retaining	many	points	on	the	‘columns’	of	some	attribute	values.	
	

	
Figure	6.		Example	of	challenges	value	functions	pose	to	fitting	data	to	discern	driving	factors	

	
In	light	of	these	data	characteristics	in	the	decision	space,	we	explored	various	methods	that	could	help	us	identify	
drivers	across	the	sPF,	using	both	the	notional	JLTV	model	and	the	SMR	helicopter	model	discussed	under	Section	
2.2.		A	summary	of	these	methods	to	elucidate	variable	importance	is	presented	here:	
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§ Linear	Regression	Models	of	1st	and	2nd	Order.	

Linear	models	are	a	general	class	of	models	that	fit	a	regression	equation	that	is	linear	with	respect	to	the	
coefficients.	These	include	Ordinary	Least	Squares	(OLS),	as	well	as	more	advanced	fitting	methods	such	
as	 LASSO	 and	 Ridge	 Regression.	 	 Linear	 models	 are	 good	 candidates	 for	 modeling	 due	 to	 their	 easily	
interpreted	 coefficients	 and	 because	 of	 their	 ability	 to	 fit	 a	model	 quickly	 and	 in	 almost	 any	 software	
language.	The	primary	limitation	is	that	interaction	terms	make	coefficients	harder	to	interpret.		The	first	
and	second	order	regression	models	worked	well	with	the	notional	JLTV	model,	but	not	as	well	with	the	
SMR	helicopter	model.		The	latter	had	several	highly	correlated	attributes	and	some	in	which	the	attribute	
value	exhibited	small	variations	over	a	comparatively	wide	range	of	costs.	

	
§ Generalized	Additive	Models.	

Generalized	 Additive	 Models	 (GAMs)	 are	 a	 class	 of	 regression	 model	 that	 uses	 a	 summation	 of	 basis	
functions	 to	 model	 data.	 	 One	 class	 of	 GAMs	 that	 is	 considered	 here	 is	 the	 Multivariate	 Adaptive	
Regression	Splines	(MARS).	MARS	uses	a	‘hinge	function’	as	its	basis	function.		A	constant	determined	by	
the	model	fitting	algorithm,	also	called	a	‘knot’	in	the	hinge	function	serves	as	an	activation	point	above	or	
below	 which	 a	 linear	 equation	 of	 the	 form	 𝑐/(𝑏 − 𝑥)	 is	 active,	 and	 below	 or	 above	 which	 the	 hinge	
function	is	zero.	 	The	advantages	of	MARS	is	that	it	has	the	same	interpretability	as	OLS	with	the	added	
feature	 that	 the	hinge	 functions	 allow	 for	 the	 input	 space	 to	be	 segmented	 into	different	 regions.	 This	
essentially	 creates	 several	 linear	models	 throughout	 the	data,	which	could	 lead	 to	better	 fits	and	more	
interesting	 results,	 such	 as	 knowing	 that	 a	 variable	 is	 only	 impactful	 in	 different	 regions	 of	 its	 values.	
When	interactions	are	included,	interpretability	suffers	in	the	same	way	as	for	OLS.		For	the	notional		JLTV	
model,	 which	 used	 a	 Needs	 Context	 valuing	 ‘payload	 mass’	 and	 ‘cruise	 range’,	 this	 approach	 showed	
payload	mass	as	a	large	cost	driver	when	it	is	above	0.38	(when	the	first	basis	function	activates).	Below	
that	value,	payload	has	a	slightly	lower	impact	on	cost.	The	cost	impact	of	cruise	range	remains	constant	
according	 to	 the	 model.	 	 The	 MARS	 fit	 is	 able	 to	 add	 more	 nuance	 than	 the	 OLS	 regression	 to	 the	
interpretation	of	results	while	still	being	easily	interpreted.	The	fit	says	that	low	values	of	payload	utility	
do	not	impact	cost	as	much	as	high	values.	This	is	most	likely	indicative	of	more	flexibility	in	finding	low	
cost	ways	to	achieve	lower-valued	payloads,	while	high	values	for	payloads	require	more	cost.		The	model	
fit	for	the	SMR	helicopter,	based	on	R2,	is	better	than	that	of	its	OLS	model.	We	see	the	same	behavior	as	
in	the	notional	JLTV	example	model	where	attributes	become	more	impactful	on	cost	the	larger	they	are.		
Interpretability,	 however,	 is	more	of	 a	problem	and	dependent	on	 knot	 locations.	 The	 large	 coefficient	
values	 near	 the	 top	 of	 the	 attribute	 levels	make	 interpretation	 difficult,	which	would	 hamper	 analyses	
that	 change	 thresholds	 and	 objectives	 to	 enable	 further	 requirements	 studies.	 The	 repeated	 basis	
functions	and	overlapping	basis	functions	that	are	seen	further	complicate	the	issue.	

	
§ Neural	Network	Models.	

Neural	Networks	(NNs)	are	a	large	class	of	models	that	use	a	variety	of	‘activation	functions’	in	a	network	
that	takes	in	the	data	as	inputs	and	passes	the	data	forward	through	the	activation	functions	in	successive	
‘hidden	 layers’.	 	 This	 kind	 of	 network	 is	 known	 as	 a	 feedforward	 neural	 network.	 	 For	 regression,	 a	
network	with	one	hidden	layer	of	sigmoid	functions	and	a	single	linear	output	layer,	all	with	bias	nodes,	is	
a	good	starting	point.		NNs	have	the	advantage	that	they	do	not	assume	any	structure	to	the	data,	rather	
that	 structure	 is	what	 is	 trying	 to	 be	 learned.	 	 The	 disadvantage	 is	 the	NNs	 are	 notoriously	 difficult	 to	
interpret.	 	Since	NNs	use	a	series	of	coefficients	and	activation	 functions,	 the	 importance	of	an	 input	 is	
found	by	measuring	the	total	of	all	the	coefficients	that	the	 input	travels	along	 in	the	network.	This	will	
measure	the	aggregate	amount	of	activation	and	deactivation	that	the	network	has	selected	for	the	input.	
The	importance	can	be	measured	using	the	absolute	value	of	the	activation	weights	or	by	accounting	for	
the	sign	of	the	weights.	The	former	describes	the	gross	amount	of	work	being	done	by	an	input,	while	the	
latter	 describes	 the	 net	 amount.	 	 Of	 all	 the	 methods	 tried,	 the	 Absolute	 Neural	 Network	 Importance	
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measure	 is	 the	 only	 clear	 loser.	 	 This	 is	 due	 to	 its	 inability	 to	 tell	 the	 difference	 in	 activation	 or	
deactivation	in	the	network.	
	

§ Local	Covariance	and	Correlation	
Local	 Covariance	 (LC)	 is	 a	 weighted	 version	 of	 the	 standard	 covariance	 definition	 where	 weights	 are	
applied	as	a	function	of	the	distance	of	a	data	point	from	a	given	reference	point.	Like	covariance,	it	gives	
the	 strength	 of	 a	 monotonic	 relationship	 between	 features	 of	 data,	 but	 prioritizes	 information	 that	 is	
closer	to	a	particular	point	in	the	input	space.		The	local	covariance	is	calculated	around	every	data	point	
in	 the	 soft	 Pareto	 Frontier,	 and	 is	 used	 to	 produce	 plots	 of	 covariance	 or	 correlation	 values	 of	 the	
attribute	as	a	function	of	cost.		The	local	covariance	alone	was	not	very	informative	since	it	did	not	reside	
on	 any	 given	 interval,	 and	 in	 fact	may	 be	 quite	 small.	 	 Converting	 covariances	 to	 correlations	 provides	
more	discriminating	information.	
	

§ Partial	Correlation.	
Partial	Correlation	(PC)	is	a	measure	of	correlation	that	controls	for	the	effects	of	other	variables.	It	does	
so	 by	 looking	 at	 the	 correlation	 between	 the	 residuals	 of	 two	 attributes	 after	 the	 two	 attributes	 have	
been	fit	by	a	linear	model	of	the	other	attributes.	Given	a	set	of	attributes,	A,	if	X	and	Y	are	attributes	in	
that	set	(such	as	cost	and	payload	mass),	then	the	partial	correlation	is	found	from:	

𝑋W = 𝑋 − 𝑓( 𝑎 ∈ 𝐴 ∶ 𝑎 ∉ {𝑋, 𝑌} )	
𝑌W = 𝑌 − 𝑓( 𝑎 ∈ 𝐴 ∶ 𝑎 ∉ {𝑋, 𝑌} )	

𝑝𝑎𝑟𝑡𝑖𝑎𝑙	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑟𝑟(𝑋W, 𝑌W)	
Doing	so	attempts	to	remove	the	effect	of	correlated	attributes,	which	we	have	already	seen	occur	and	
cause	issues	with	interpreting	the	models	discussed	so	far.	 	Visually	for	the	Local	Partial	Correlation	and	
numerically	for	the	Global	Partial	Correlation	we	see	agreement	with	several	of	the	other	methods.		The	
partial	 correlation	 reduces	 the	 impact	of	moderately	correlated	variables	by	 fitting	a	model	 to	 the	data	
using	highly	correlated	variables,	leaving	very	little	residual	information	for	correlations	on	the	attribute	in	
question.		

	
The	 low	 dimensional	 attribute	 space	 for	 the	 notional	 JLTV	 example	 made	 all	 the	 analysis	 methods	 simple	 to	
interpret,	 and	 no	 methods	 disagreed	 in	 this	 case.	 The	 high	 dimensionality	 and	 high	 correlation	 of	 the	 SMR	
example	were	expected	to	make	some	of	the	analyses	more	differentiable,	which	were	seen	to	some	extent.		The	
difficulty	 here	 is	 discovering	 which	 variables	 are	 leading	 and	 which	 are	 following.	 When	 they	 are	 all	 highly	
correlated	it	may	very	well	be	that	all	of	them	are	significant	cost	drivers.		The	notional	JLTV	example	illustrated	
that	non-cost	drivers	can	be	readily	detected.		Binning	the	sPF	into	regions	helped	to	some	extent	by	illustrating	
how	 cost	 drivers	 can	 change	 across	 the	 sPF,	 but	 still	 suffered	 from	 the	 same	 interpretability	 issues	 as	 to	what	
precisely	was	driving	when	there	were	highly	correlated	attributes.	
	
Whether	 the	 tradespace	 was	 generated	 using	 LHS	 or	 the	 algorithmic	 approach	 also	 made	 differences	 in	 the	
ensuing	analyses.		Soft	frontiers	were	defined	as	relaxing	the	dominance	relation	within	a	user-defined	band.	The	
soft	frontiers	allow	for	more	data	to	enter	the	analysis	to	improve	them.	Without	the	extra	data,	methods	other	
than	 linear	 regression	 would	 not	 have	 worked	 due	 to	 the	 sparsity	 of	 data,	 especially	 for	 the	 local	 correlation	
methods.	For	 the	LHS,	 there	were	 fewer	data	points	along	the	 frontier	and	so	 fewer	 in	 the	sPF	set	 for	analysis.		
Using	 the	 same	 methods	 on	 each	 type	 of	 generated	 sPF	 found	 lower	 certainty	 and	 fit	 quality	 for	 the	 LHS	
generated	tradespace.			For	the	SMR	example,	a	first	order	linear	regression	achieved	an	R2	of	0.824	for	the	NSGA-
II	 tradespace	 compared	 to	0.74	 for	 the	 LHS	 tradespace.	 	 Interpretability	 issues	between	 the	model	parameters	
became	more	challenging	as	well.	 	 In	all,	all	methods	produced	poorer	results	when	applied	to	a	LHS	frontier	as	
compared	to	the	NSGA-II	derived	frontier.		This	is	because	there	are	fewer	data	points	within	the	soft	frontier,	as	
well	as	no	real	mechanism	of	enforcement	except	space-filling	sampling	and	luck	to	achieve	a	good	frontier.	
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For	 studying	 cost	 drivers,	 the	 actual	 attribute	 values	 themselves	 should	 be	 used	 with	 the	 appropriate	
normalization,	 as	 is	 standard	 practice	 for	 many	 statistical	 methods.	 	We	 do	 not	 fit	 any	methods	 to	 the	 value	
function	levels	of	the	attributes	due	to	the	non-uniqueness	of	data	at	and	above	objective	and	below	threshold	as	
explained	 previously.	 	 By	 using	 the	 attributes	 levels	 directly,	 we	 retain	 the	 information	 of	 the	 physics	 of	 the	
problem.	The	soft	Pareto	Frontier	already	implicitly	contains	the	value	statements	that	generated	it,	so	we	are	no	
longer	consider	with	what	generated	value,	but	what	 is	changing	 in	the	valued	attributes	that	changes	cost	 the	
most.	
	
Identifying	Similarity	and	Relationship	to	Drivers.	
Our	 initial	goal	was	to	see	 if	we	could	use	the	concept	of	soft	Pareto	frontier	sets	as	a	 foundation	representing	
“better”	 design	 alternatives	 for	 a	 given	 Needs	 Context,	 combine	 the	 sPF	 sets	 from	 at	 least	 two	 differently	
prioritized	Needs	Contexts	 via	 their	union,	 identify	designs	exhibiting	 some	definition	of	 similarity,	 and	 thereby	
identify	a	potential	product	family	(or	families)	for	which	designs	in	that	set	may	satisfy	distinct	Needs	Contexts	
better	 than	 a	 single	 design.	 	 The	 intent	 was	 not	 to	 to	 address	 engineering	 feasibility	 of	 the	 designs	 at	 this	
point.		Simply,	we	wish	to	identify	these	groupings	as	potential	families	of	designs.	
	
We	 used	 a	 combination	 of	 randomized	 data	 representing	 a	 tradespace	 as	 well	 as	 the	 JLTV	model	 to	 evaluate	
different	similarity	measures	that	could	apply	to	design	data.		Among	these	were	the	Sorensen	similarity	quotient	
(a	variant	of	the	Jaccard	Index),	where	the	similarity	quotient	will	exist	for	each	pair	of	candidate	designs	(i.e.,	 i	
and	j)	and	is	given	by:	

𝑄𝑆 = 	
2|𝑋 ∩ 𝑌|
𝑋 + |𝑌|

	

		
where	|X|	and	|Y|	are	the	numbers	of	species	in	the	two	samples,	and	QS	ranges	between	0	and	1.		In	our	case,	
|X|	is	the	number	of	design	variables	in	design	alternative_i	and	|Y|	is	the	number	of	design	variables	in	design	
alternative_j	 (which	 for	us	 is	equal	across	all	 i	 and	 j).	 	 The	 intersection	of	 the	 two	 is	how	many	design	variable	
levels	 they	 have	 in	 common,	with	 common	 being	 +/-	 epsilon	 for	 that	 design	 variable.	 	 The	 Sorensen	 distance	
measure	is	semi-metric	in	that	it	does	not	satisfy	the	triangle	inequality	and	given	by:	
	

𝑑` = 	1 − 	
2|𝑋 ∩ 𝑌|
𝑋 + |𝑌|

	

		
We	 also	 investigated	 an	 alternate	 similarity	 measures,	 the	 Jaccard	 distance	 and	 its	 modification	 given	 by	
Tamimoto.		The	Jaccard	similarity	measure	is	given	by:	
	

𝐽 𝐴, 𝐵 = 	
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

= 	
|𝐴 ∩ 𝐵|

𝐴 + 𝐵 − |𝐴 ∩ 𝐵|
	

		
where	A	and	B	are	 sets	of	data	and,	 for	our	problem,	 their	 components	correspond	 to	 the	design	variables	 for	
distinct	 design	 alternatives	 as	 for	 the	 Sorensen	 measure.	 	 The	Jaccard	 distance,	 which	 measures	dissimilarity	
between	 sample	 sets,	 is	 complementary	 to	 the	 Jaccard	 coefficient	 and	 is	 obtained	 by	 subtracting	 the	 Jaccard	
coefficient	from	1,	or,	equivalently,	by	dividing	the	difference	of	the	sizes	of	the	union	and	the	intersection	of	two	
sets	by	the	size	of	the	union:	

𝑑d 𝐴, 𝐵 = 1 − 𝐽(𝐴, 𝐵)	
		
In	a	modification	of	the	Jaccard	index,	generally	called	the	Tamimoto	index,	the	similarity	index	is	value	is	equal	to	
the	Jaccard	coefficient	of	the	two	sets	when	each	sample	is	modelled	as	a	set	of	attributes.		The	distance	metric	is	
different,	however,	and	is	intentionally	semi-metric:	
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𝑑efg/ghBh = 	−𝑙𝑜𝑔i(𝐽(𝐴, 𝐵)	

			
Of	 these	measures,	 the	 Sorenson	 places	 greater	weight	 on	 common	 elements	 than	 Jaccard,	e.g.,	 2	 sets	with	 8	
items	each	and	4	in	common	would	have:		S_QS	=	2*4/(8+8)	=	8/16	=	0.5						and					S_J	=	4	/	(16	-	4)	=	4/12	=	0.33.	
Sorenson	asserts	that	the	co-occurrence	or	coincidence	of	variable	states	among	objects	 is	more	 informative	or	
important	than	disagreements.	This	is	based	on	the	logic	of	the	harmonic	mean	and	is	thus	suitable	for	data	sets	
with	 large-valued	 outliers.	 It	 may,	 however,	 increase	 the	 influence	 of	 small-valued	 outliers.		For	 comparison,	
Euclidean	distance	measures	will	place	greater	emphasis	on	outliers	by	definition.	
	
As	 an	 initial	 step	 in	our	 investigations,	we	evaluated	 all	 of	 the	 candidate	designs	 in	 a	 sPF	on	 the	basis	 of	 their	
design	variables	(and	not	performance	attributes).		Similarity	between	any	two	design	alternatives	was	defined	on	
a	soft	measure,	for	example,	+/-	5%	of	the	design	variable	value,	and	not	on	a	binary	equivalence.		This	produces	a	
square	(number	of	candidate	designs	by	number	of	candidate	designs),	symmetric	similarity	matrix	with	values	of	
1	along	the	diagonal	and	all	values	between	0	and	1	otherwise.		We	arbitrarily	determined	a	threshold	to	specify	
two	designs	as	 similar	or	not.	 	 For	example,	 if	 the	 threshold	was	 set	 to	be	0.75,	 all	 design	pairs	with	 similarity	
measures	at	or	above	0.75	were	defined	as	similar	while	those	with	measures	below	0.75	were	not.	
	
We	then	investigated	various	methods	by	which	we	might	group	the	designs	that	were	determined	to	be	similar	
including	several	clustering	methods	that	would	allow	for	non-unique	clustering	(i.e.,	designs	could	reside	in	more	
than	one	cluster	as	in	fuzzy	k-means	clustering)	and	not	necessarily	every	design	had	to	reside	in	a	cluster.	
	
We	found	that	we	could	apply	the	similarity	measures	easily	and	with	strong	intuitive	interpretability.		Clustering,	
however,	was	more	of	a	problem.		There	was	so	much	variation	across	the	sets	of	designs	that	were	deemed	to	be	
similar,	that	the	designs	did	not	readily	separate	into	well-formed	groupings.		There	were	several	reasons	for	this	
difficulty,	but	chief	among	them	were	the	relationships	of	the	design	variables	with	respect	to	membership	in	the	
sPF	and	with	respect	to	each	other.		There	were	several	ways	a	design	alternative	could	reside	in	the	sPF,	and	the	
design	variables	most	 responsible	 for	helping	 it	get	 there	 (i.e.,	 the	design	variable	drivers)	were	not	necessarily	
those	 that	 ended	 up	 being	 the	 primary	 basis	 for	 similarity.	 	 We	 had	 made	 no	 weighting	 of	 design	 variable	
importance	in	the	similarity	measures.	 	Also,	 in	a	tradespace	for	an	engineered	system,	the	design	variables	will	
not	 be	 independent.	 	 There	will	 be	 constraints	 in	 terms	 of	 how	 the	 design	 variables	 relate	 to	 one	 another	 to	
produce	 a	 feasible	 engineered	 system,	 even	 if	 those	 constraints	 are	 hidden	 in	 the	 model	 transfer	 functions	
because	 the	 engineer	 who	 understood	 the	 system	 physics	 captured	 them	 but	 they	 are	 not	 stated	 explicitly	
otherwise.	 	 These	 two	 factors	 strongly	 affect	what	we	 really	 need	 to	 be	 evaluating	 on	 as	 the	 basis	 for	 system	
design	similarity	and	relate	to	the	findings	in	the	cost	driver	section.		We	will	synthesize	these	efforts	and	discuss	
next	steps	below.	
	
Synthesizing	the	Findings	into	a	Holistic	View.	
The	challenges	discovered	during	the	course	of	this	effort	were	similar	and	due	to	the	nature	of	the	relationships	
between	 variables	 in	 the	 design	 space	 and	 the	 relationship	 between	 the	 design	 space	 and	 the	 decision	 space.		
Namely,	the	mapping	of	any	design	space	to	a	decision	space	may	not	at	all	carry	through	the	main	drivers	of	the	
problem.		For	example,	if	low	fuel	consumption	technologies	are	a	major	cost	driver	but	fuel	usage	is	not	a	valued	
attribute,	the	Pareto-Frontier	will	contain	only	minimal	variation	in	fuel	consumption	so	that	it	can	avoid	high-cost	
regions.		An	analysis	of	the	sPF	alone	would	show	that	cost	was	not	driven	by	fuel	consumption	even	though	that	
is	not	reflective	of	the	reality.		The	similarity	effort	also	found	that	design	variables	that	were	responsible	for	any	
two	designs	being	classified	as	similar	were	not	necessarily	the	important	ones	that	drove	membership	in	the	sPF.		
Also	there	were	strong	correlations	found	in	some	problems	between	valued	attributes	 in	the	decision	space	as	
well	as	strong	correlations	and	non-independence	across	many	design	variables	in	the	design	space.	
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Based	on	the	findings	here,	there	are	two	primary	recommendations	to	make	these	approaches	robust	across	a	
wide	variety	of	problem	types:	

1) Explore	robust	ways	to	 identify	drivers	acting	on	the	complete	set	of	raw	data,	meaning	design	variable	
and	performance	attributes	together,	for	designs	in	sPF	sets.		These	drivers	will	always	be	related,	and	the	
more	 complete	 picture	 can	 help	 resolve	 the	 issue	 of	major	 drivers	 not	 being	 captured	 in	 the	 decision	
space	due	to	the	preference	architecture.	

2) Mature	our	understanding	of	the	most	effective	ways	to	adaptively	generate	and	sample	a	tradespace	to	
get	 a	 “good”	 Pareto	 Frontier	 and	 therefore	 a	 rich,	 well-represented	 set	 of	 designs	 that	 offer	 a	 solid	
foundation	for	analyses	as	per	(1)	above.	

Publications	and	Links	to	other	Tasks	
	
Concepts	 and	 methods	 in	 this	 subtask	 relate	 strongly	 to	 the	 subtasks	 of	 disparate	 operational	 environments	
(Section	2.2).	
	
Concepts	and	methods	in	this	subtask	will	relate	to	the	software	engineering	and	architecture	effort	(Task	3)	once	
they	mature	sufficiently	to	merit	inclusion	in	the	tool.			
	
	

2.4 SYSTEMS	OF	SYSTEMS	AND	CAPABILITY	PORTFOLIO	ASSESSMENT	

Objectives	
	
For	this	subtask,	we	set	out	to	develop	at	least	a	notional	framework	or	guiding	philosophy	for	how	to	bridge	the	
concepts	and	measures	of	resilience	at	an	individual	system	level	with	the	system	of	systems	(SoS)	level	and	vice	
versa.	
	
Through	ERS,	the	DoD	seeks	a	transformation	in	Defense	acquisition	with	the	contribution	of	systems	engineering	
throughout	a	system’s	lifecycle	that	is	needed	to	address	a	geopolitical	environment	marked	by	rapidly	changing	
threats,	 tactics,	 missions,	 and	 technologies.	 As	 a	 critical	 part	 of	 this	 challenge,	 a	 growing	 number	 of	 military	
capabilities	are	achieved	through	a	SoS	or	capabilities	portfolio	approach,	even	though	requirements	and	design	
decisions	are	nearly	always	specified	at	the	 individual	system	level.	Defense	systems	typically	operate	within	an	
environment	with	many	other	systems,	 rarely	performing	operations	 in	a	strictly	solitary	sense.	 In	 tandem	with	
the	SoS	engineering	efforts,	 the	DoD	focus	on	ERS	strives	 for	effective	and	efficient	design	and	development	of	
complex	engineered	systems	across	their	lifecycle	and	changing	operational	needs.		
	
With	the	framework	of	ERS	as	a	foundation,	we	seek	to	develop	an	understanding	and	description	of	cross-scale	
resiliency	 through	an	operational	 lens	 to	help	bridge	SoS	and	constituent	 system	evaluation.	 	While	multi-scale	
assessments	seek	to	evaluate	behavior	or	some	other	attribute	at	two	or	more	distinct	and	discrete	scales,	cross-
scale	analyses	take	multi-scale	assessments	and	purposefully	look	for	interactions	across	the	scales.		We	strive	to	
build	a	more	tangible	perspective	on	resilience	and	how	we	can	create	more	informed	decision	analysis	at	both	
the	system	and	the	SoS	levels	through	a	more	integrated	and	operationally	relevant	process.	
	
Our	 efforts	 to	 date	 have	 included	 extending	 web-based	 decision	 support	 frameworks	 to	 support	 methods,	
processes,	and	tools	(MPTs)	that	enable	highly	flexible	and	scalable	tradespace	exploration	and	analysis.		As	these	
efforts	mature,	we	must	better	understand	how	to	leverage	and	integrate	models	and/or	outputs	at	the	SoS	level	
to	guide	tradespace	exploration	and	analysis	at	the	constituent	system	level	and	vice	versa.		The	penultimate	goal	
for	 this	 work	 is	 to	 begin	 to	 generate	 the	 insights	 needed	 for	 truly	 synthesized	 SoS-to-Local	 System	 analyses,	
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thereby	helping	to	evolve	the	overall	DoD	acquisitions	process.		Adding	conceptual	dimensionality	at	the	SoS	level	
can	help	focus	constituent-level	system	design	analysis,	feeding	back	to	and	therefore	more	effectively	supporting	
SoS	evaluation.	
	
	
Work	Description	and	Accomplishments	
	
We	thoroughly	investigated	concepts	of	resilience	across	different	disciplines,	reviewed	any	metrics	that	had	been	
suggested	in	the	literature,	and	also	reviewed	the	SoS	work	being	conducted	by	Purdue	University	under	the	SERC	
as	well	as	their	associated	publications.	 	We	also	reviewed	DoD	guidance	on	the	SoS	perspective	as	well	as	how	
systems	engineering	should	fit	or	evolve	to	address	the	future	needs	facing	the	acquisitions	process.	
	
As	we	began	this	study,	our	goals	were	to	specify	a	relatively	direct	mapping	between	a	resilience	hierarchy	at	the	
individual	and	SoS	 levels	of	analysis.	 	As	we	synthesized	the	understanding	of	resilience	and	fields	of	study	that	
must	come	together	to	support	the	next-generation	of	materiel	analysis,	however,	we	realized	that	resilience	is	an	
emergent	 attribute	 and	 its	 evaluation	 would	 not	 be	 so	 simple.	 	 	 This	 work	 was	 summarized	 with	 specific	
recommendations	 for	how	 to	harmonize	SoS-to-individual	 system	analyses	 in	 the	 report	 “Cross-scale	 resilience:		
Relating	Systems	of	Systems	to	 Individual	System	Analysis	and	Back	Again“	 (Sitterle,	2016).	 	The	discussion	that	
follows	below	is	the	executive	summary	of	this	work.	
	
Resilience	 is	 achieved	 through	 engineering	 design	 decisions	 that	 result	 in	 a	 system’s	 or	 SoS’s	 ability	 to	 be	 	 (i)	
effective	 in	 the	 face	 of	 many	 threats	 to	 its	 operational	 performance	 (preparation	 enabling	 the	 ability	 to	 be	
absorptive	 in	 the	moment),	 (ii)	 robust	 in	 terms	 of	 its	 ability	 to	 deliver	 intended	 performance	 across	 a	 diverse	
range	of	operational	contexts,	(iii)	amenable	to	modification	that	enables	the	system	to	recover	from	an	adverse	
event	or	better	address	a	new	threat	that	presents	itself	in	the	future,	and	(iv)	efficient	in	terms	of	the	time,	cost,	
and	personnel	resources	required	to	do	so.			
	
Resilience	is	not	a	linear	aggregate	of	other	system	qualities,	but	rather	their	contextual,	nonlinear	synthesis.		We	
arrive	at	an	understanding	of	whether	or	not	our	system	is	resilient	through	an	ebb	and	flow	of	design	alteration,	
requirements	maturation,	and	M&S	of	different	contexts	and	system	architectures,	all	of	which	are	linked,	guided,	
and	 supported	 through	 decision	 analysis.	 	 To	 help	 evolve	 the	 overall	 DoD	 acquisitions	 process	 for	 new	 system	
development,	we	need	a	more	representative	and	effective	synthesis	of	SoS	to	local	system	analyses.	We	seek	to	
contribute	to	the	discussion	by	deliberately	bringing	in	an	operational	lens,	a	“red	team”	view,	to	compliment	the	
prevalent	capability-based	perspectives	currently	in	practice.				
	
The	DoD	seeks	a	transformation	in	Defense	acquisition	with	the	contribution	of	systems	engineering	throughout	a	
system’s	 lifecycle	 that	 is	 needed	 to	 address	 a	 geopolitical	 environment	 marked	 by	 rapidly	 changing	 threats,	
tactics,	missions,	and	technologies.	As	a	critical	part	of	 this	challenge,	a	growing	number	of	military	capabilities	
are	achieved	through	a	SoS	approach,	even	though	requirements	and	design	decisions	are	nearly	always	specified	
at	the	individual	system	level.	Defense	systems	typically	operate	within	an	environment	with	many	other	systems,	
rarely	performing	operations	in	a	strictly	solitary	sense.	In	tandem	with	the	SoS	engineering	efforts,	the	DoD	focus	
on	Engineered	Resilient	Systems	strives	for	effective	and	efficient	design	and	development	of	complex	engineered	
systems	across	 their	 lifecycle	and	 changing	operational	needs.	With	 the	 framework	of	 ERS	as	a	 foundation,	we	
seek	 to	develop	 an	understanding	 and	description	of	 cross-scale	 resiliency	 through	 an	operational	 lens	 to	help	
bridge	SoS	and	constituent	system	evaluation.		
	
Whether	focused	on	design	of	new	systems	as	for	the	ERS	program,	systems	of	systems	engineering,	or	lifecycle	
perspectives,	“resilience”	has	become	a	key	term	across	many	aspects	of	the	DoD’s	acquisitions	ecosphere.	In	this	
session,	we	aim	describe	resilience	 in	a	way	that	 is	meaningfully	helpful	to	system	design	and	decision	analysis.	
We	 offer	 the	 view	 that	 resilience	 is	 an	 inherent	 system	 quality	 created	 through	 design	 choices	 that	 enable	 a	
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system	 to	 maintain	 its	 performance	 objectives	 in	 the	 face	 of	 diverse	 operational	 challenges,	 in	 either	 a	
preparative	or	recovery	sense,	within	acceptable	time	and	cost	parameters.	This	view,	while	abstract	enough	to	
be	 broadly	 relevant,	 is	 stated	 in	 a	way	 that	 offers	 a	 clear	 linkage	 between	 design	 choices	 for	 a	 system,	 other	
system	 qualities	 those	 choices	 may	 produce,	 and	 the	 functional	 objectives	 for	 the	 system.	 	 It	 includes	 the	
operational	perspective,	preparative	design	choices	 that	enable	 the	 system	 to	perform	across	diverse	 contexts,	
and	(related	to	those	preparative	choices)	the	ability	to	be	modified	later	in	order	to	preserve	performance.		What	
we	explicitly	added	to	the	prior	ERS	view	were	the	concepts	of	time	and	cost	to	do	so.	
	
This	concept	has	critical	ramifications	with	respect	to	the	realities	facing	fielded	systems	and	their	analysis.	Critical	
system	 functionality	 and	 performance	 characteristics	 must	 be	 able	 to	 withstand	 adversary	 tactics,	 diverse	
operational	 environments	 and,	 especially	 in	 today’s	 joint	defense	environment,	 variation	 in	how	 that	 system	 is	
used	in	the	course	of	pursuing	mission	and/or	tactical	objectives	(i.e.,	its	CONOPS).	To	understand	systems	across	
these	 contexts,	 we	 must	 extend	 our	 lens	 beyond	 the	 current	 capability-based	 analyses	 –	 going	 beyond	 the	
principles	of	modular,	open	systems	–		to	include	a	“red	team”	view	during	the	design	process	itself	and	not	limit	
these	considerations	to	a	verification	and	validation	stage.	
	
Most	current	SoS	analyses	investigate	only	system-specific,	capability-based	concepts	such	as	reliability	or	mean	
time	between	failure	(MTBF).	Yet	to	effectively	design	an	SoS	to	support	operational	goals,	we	must	include	the	
concept	of	threats	to	the	realization	of	system-level	critical	functionality	and	performance	that	are	needed	at	the	
SoS	 level.	 	Whether	 due	 to	 environment,	 operational	 use,	 or	 adversary	 action,	 some	 threats	will	 affect	 certain	
constituent	systems	and	not	others.	Articulating	classes	of	threats	relevant	to	the	SoS	provides	specific	guidance	
for	engineers	and	subject	matter	experts	to	construct	appropriate	analyses	at	the	individual	system	level.		A	key	
aspect	will	 be	 to	 identify	 and	 incorporate	necessary	M&S	 components	 to	produce	 the	 relevant	 analytical	 data.	
Individual	 system	 analyses	 will	 then	 feed	 the	 SoS	 evaluations	 more	 comprehensively	 and	 specifically.	 SoS	
engineers	will	 understand	 not	 just	 the	 reliability	 of	 a	 constituent	 system,	 but	 the	 likelihood	 it	 can	withstand	 a	
threat	of	a	given	magnitude.		
	
There	 are	 several	 related	 concepts	 that	 are	 especially	 vital	 to	 putting	 these	 ideas	 into	 practice.	 For	 one,	 we	
advocate	 embracing	 the	 notion	 of	 co-evolving	 requirements	 alongside	 system	 design	 from	 the	 earliest	 stages.		
Early	stage	design	evaluations	should	include	structures	that	help	evaluate	requirements	in	terms	of	their	impact	
to	system	performance,	overall	affordability,	and	other	system	qualities	as	part	of	an	integrated	decision	analysis	
process.		How	different	requirements	for	a	potential	system	may	impact	capabilities,	performance	characteristics,	
and	affordability	(along	with	other	program	concerns)	should	be	transparent	to	key	decision	makers.		Since	this	is	
the	very	basis	of	tradeoff	decisions	that	must	be	made,	bringing	them	into	the	decision	analysis	process	offers	an	
informed	way	to	help	mature	them	into	“good”	requirements.			
	
Secondly,	 a	 ‘threat’	 is	 anything	 that	may	 compromise	 intended	 functional	 performance.	 	 Threats	 can	 result	 in	
direct	damage	to	a	system,	whether	from	an	adversary	action	or	operation	in	an	environment	too	extreme	for	the	
design.	 A	 threat	 is	 therefore	 a	 multidimensional	 concept	 encompassing	 how	 a	 system	 is	 used,	 under	 what	
conditions,	 and	under	what	external	 influencing	 factors	 including	adversary	 actions	or	 even	actions	 from	other	
systems	in	the	SoS.		The	system	alone	may	not	be	resilient	to	a	threat,	but	within	the	SoS,	it	is.	 	The	SoS	view	is	
vital	to	helping	bound	the	scope	of	the	analytical	effort	required	at	the	individual	level.		
	
In	addition,	synthesizing	capability	and	threat-based	perspectives	within	an	M&S	environment	requires	a	different	
mindset	 and	 initial	 level	 of	 effort	 from	 the	mean-value	 approach	where	 system	 qualities	 are	 evaluated	 in	 the	
abstract.	 	 To	 evaluate	 a	 system’s	 resilience,	 M&S	 components	 must	 accept	 inputs	 representative	 of	 threat	
characteristics	 and	 produce	 outputs	 representative	 of	 the	 consequences	 to	 system	 capabilities.	 	 Importantly,	
these	 M&S	 components	 must	 be	 coupled.	 	 To	 support	 these	 concepts,	 we	 seek	 a	 unification	 of	 MBSE,	
requirements	analysis,	and	decision	theory	as	 illustrated	 in	Figure	7.	 	Bringing	these	areas	of	expertise	together	
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will	 help	 us	 to	 make	 appropriate	 choices	 regarding	 levels	 of	 abstraction	 and	 interaction	 between	 M&S	
representations	for	the	current	stage	of	the	design	process.		
	

	
	

Figure	7.	Illustration	Unifying	MBSE,	requirements	analysis,	and	decision	theory	within	a	synthesized	framework	

	
Throughout	 this	 process,	 we	 need	 to	 incorporate	 multi-objective	 decision	 analysis	 as	 a	 truly	 integrated	 tool.		
Decision	analysis	in	this	context	should	not	be	viewed	as	an	activity	that	occurs	only	at	the	end	of	a	design	process	
to	 guide	 decision	 makers.	 	 Instead,	 decision	 analysis	 should	 help	 frame	 the	 problem	 (or	 each	 stage	 of	 the	
problem)	 from	 the	beginning.	 	 In	 this	 paradigm,	decision	analysis	will	 help	 frame	what	 analytical	 data	must	be	
produced	as	part	of	a	tradespace	for	evaluation.		It	will	help	guide	the	identification	of	the	next	M&S	components	
required	 to	 support	 informed	 decision	making.	 	 This	 continual	 refinement	 will	 help	 target	 the	 early	 stages	 of	
design	evaluation,	enabling	not	only	a	more	thorough	understanding	of	the	problem	but	a	more	efficient	process.	
	
In	 contrast	 to	 the	 traditional	 waterfall	 approach,	 this	 paradigm	 constitutes	 a	 more	 iterative,	 cyclic	 process	
manifested	 as	 an	 ebb	 and	 flow	 between	 mission	 engineering	 needs	 at	 the	 SoS	 level,	 the	 individual	 system	
evaluation	 needs,	 and	 the	 generation	 of	 new	 knowledge	 via	 data-driven	 analyses.	 	While	 adding	 a	 “red	 team”	
perspective	integrating	capabilities	and	threats	does	not	immediately	solve	the	problem,	it	guides	and	focuses	our	
analyses	and	empowers	more	comprehensive	decision	analysis.		In	the	end,	we	strive	to	create	a	more	enhanced	
understanding	 of	 the	 complex	 relationships	 across	 the	 constituent	 systems,	 the	 SoS,	 operational	 environments	
and	 CONOPS,	 as	 well	 as	 adversary	 threats	 for	 systems	 engineers,	 mission	 engineers,	 and	 decision	 makers.	
Bidirectional	concepts	of	operations	will	result	in	a	more	thorough,	grounded	approach	to	mission	engineering	for	
SoSs	as	well	as	enable	a	mission-relevant	exploration	of	the	tradeoffs	between	design	margins	and	affordability	at	
the	system	level.	
	
Publications	and	Links	to	other	Tasks	
	
This	 work	 was	 summarized	 with	 specific	 recommendations	 for	 how	 to	 harmonize	 SoS-to-individual	 system	
analyses	in	the	report	“Cross-scale	resilience:		Relating	Systems	of	Systems	to	Individual	System	Analysis	and	Back	
Again”	(Sitterle,	2016).	
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Portions	of	this	work	and	some	of	the	concepts	it	embodies	were	presented	to	attendees	of	the	Decision	Analysis	
and	 Resilience	Workshop	 hosted	 by	 the	 Institute	 of	 Systems	 Engineering	 Research	 (ISER),	 U.S.	 Army	 Engineer	
Research	Development	Center	(ERDC).		The	workshop	was	held	in	May	2016	in	Vicksburg,	MS.	
	
This	work	was	 also	 submitted	 for	 consideration	 as	 a	 presentation	 under	 the	 SoS	 section	 for	 the	NDIA	 Systems	
Engineering	conference	in	October	2016.	
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3 TRADESPACE	SOFTWARE	DEVELOPMENT	(AND	TRADESTUDIO	INTEGRATION)	

3.1 OBJECTIVES	AND	SUMMARY	

This	primary	goal	of	 this	 task	was	 to	extend	 the	capabilities	of	 the	ERS	TRADESPACE	v1.0	software	architecture	
developed	 under	 an	 earlier	 effort	 (SERC	 RT-120).	 	 Furthermore,	 this	 task	 sought	 to	 develop	 modules	 for	 the	
broader	ERS	TradeStudio	software	suite	developed	by	ERDC.	The	ERS	TRADESPACE	toolset	developed	under	RT-
120	has	been	updated	to	version	1.4.1	and	released	as	a	 rebranded	“ERS	TradeBuilder”	under	 the	TradeStudio	
suite.	
	
Building	off	previous	phases	(RT-120),	the	workflow	needed	for	a	practicing	Systems	Engineer	is	a	nontrivial	set	of	
interconnected	 steps	 that	depend	on	 the	particular	problem	under	 consideration	and	 the	mental	model	of	 the	
engineer	(Figure	8).	For	example,	with	the	next	generation	military	vehicles	the	Systems	Engineer	must	need	to	
consider	 all	 of	 the	 requirements	 that	 the	 vehicle	 must	 meet	 whether	 operational,	 fiscal,	 or	 technical.	 These	
requirements	 as	 well	 as	 the	 fundamental	 vehicle	 dynamics	 combine	 to	 generate	 a	 multitude	 of	 system	
alternatives	 that	need	 to	be	explored	and	 traded	against	one	another.	 If	 no	 feasible	alternative	 can	 satisfy	 the	
high	level	needs	then	the	design	process	can	begin	again	either	by	considering	new	architectures	(with	associated	
physics	 based	models)	 or	 relaxing	 some	 stringent	 requirements.	 This	 is	 just	 an	 over	 simplified	 example	 but	 all	
these	steps	should	be	inside	a	common	data	model	that	pulls	together	the	desperate	analyses	and	conform	to	the	
Systems	Engineers	thought	pattern	facilitating	their	workflow	rather	than	limiting	their	creativity.	
	
	

	
Figure	8.	Systems	Engineering	Networked	Workflow	

	
	
This	means	the	tool	needs	to	allow	the	systems	engineer	to	move	easily	between	different	tasks	and	views	so	they	
can	understand	more	aspects	of	the	problem	and	the	implications	of	certain	decisions.	Furthermore,	by	tracking	
the	actions	taken	by	the	Systems	Engineer	the	evolution	of	the	system	and	design	analysis	history	can	be	replayed	
for	reporting	purposes	and	presented	to	higher	level	decision	makers	and	stakeholders.		
	
The	 Systems	 Modeling	 Language	 (SysML)	 is	 a	 standardized	 set	 of	 descriptions	 that	 has	 been	 adopted	 by	 the	
Systems	Engineering	community	to	help	document	the	entities	and	their	inter-relationships	for	systems.	The	ERS	
Tradespace	Tool	(TradeBuilder)	core	data	model	is	inspired	by	SysML	for	the	visual	representation	of	the	encoded	
system	but	currently	only	supports	a	subset	of	the	full	SysML	specification.		
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3.2 ERS	TRADEBUILDER	WALKTHROUGH	

The	ERS	TradeBuilder	v1.4.1	revolves	around	three	primary	views	(Define,	Execute,	and	Explore)	to	try	and	satisfy	
the	main	analysis	loops	that	must	be	performed	by	the	Systems	Engineer.	When	arriving	at	ERS	TradeBuilder	the	
user	is	presented	with	the	landing	page,	Figure	9,	giving	a	brief	overview	of	the	alternative	views	and	providing	a	
mechanism	 for	 login	 and	 authentication	 before	 entry	 into	 the	 tool.	 Once	 authenticated,	 the	 user	 can	 then	
proceed	to	the	different	views	based	on	their	particular	needs	and	workflow.		

	
Figure	9.	ERS	TradeBuilder	Landing	Page	

	
3.2.1 DEFINE	

In	the	Define	views	the	system	of	interest	can	be	collaboratively	authored	in	SysML	Block	Definition,	Parametric	
Diagrams,	and	Requirement	Diagrams.		
	
Block	Definition	Diagrams	
Block	Definition	diagrams	capture	the	structural	information	of	the	system.	For	example,	if	designing	a	helicopter	
the	helicopter	 could	own	various	 value	properties	 like	weight	or	 cost	 and	 contain	additional	parts	 (as	 separate	
blocks)	 like	 the	 airframe	or	 rotor,	 Figure	 10.	 In	 turn	 these	blocks	 can	have	 their	 own	 value	properties	 and	 sub	
parts.		
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Figure	10.	SysML	Block	Diagram	Example	

	
To	interact	with	the	diagram,	the	user	can	click	on	any	block	to	open	a	popup	showing	the	detail	view	with	various	
properties	for	the	user	to	edit,	Figure	11.	These	properties	include	adding	or	removing	block	value	properties	or	
changing	a	particular	value	properties	 lower	 limit,	upper	 limit	or	unit.	Additionally	 the	detail	view	 for	 the	block	
allows	the	user	 to	add/remove	different	 relationships	and	to	change	the	kind	of	 relationship	between	different	
entities.	For	example,	below	shows	the	detail	view	of	the	Work-Breakdown	Structure	block	that	lists	the	different	
value	properties	and	all	the	part	containment	relationships.	If	the	user	were	to	edit	this	popup	the	diagram	would	
reflect	the	new	reality.	
	
Parametric	Diagrams	
Parametric	Diagrams	focus	on	the	connection	of	these	value	properties	to	the	inputs	and	outputs	of	constituent	
engineering	physics	based	analysis	models,	Figure	12.	For	example	with	the	helicopter,	there	might	be	a	physics	
based	model	to	calculate	the	general	vehicle	performance	based	on	the	main	rotor	diameter	and	the	air	vehicle	
gross	weight.		
	
By	adding	these	 linking	relationships	between	the	different	block	value	properties	and	the	constraint	 input	and	
outputs	the	overarching	set	of	constraints	and	their	execution	order	structure	can	be	reasoned	about	when	trying	
to	get	the	full	performance	analysis	 for	a	particular	helicopter.	 	For	example,	when	clicking	of	the	SMR	Analysis	
Constraint	 a	 diagram	 is	 rendered	 showing	 the	 execution	 order	 and	 information	 flow	 between	 the	 constituent	
(Sizing,	Performance,	and	Cost)	constraints,	Figure	13.		
	
Requirement	Diagram	
Requirement	 Diagrams	 show	 how	 the	 different	 requirements	 are	 linked	 to	 the	 block	 value	 properties	 and	 the	
hierarchy	of	requirements	that	can	be	used	in	downstream	analyses	to	weight	the	different	alternatives.	Figure	14	
shows	the	requirements	diagram	for	the	helicopter	example	as	the	high	level	requirements	are	broken	into	lower	
level	requirements	tied	to	particular	value	properties.	
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Figure	11.	Detail	SysML	View	Popup	

	
	

	
Figure	12.	SysML	Parametric	Diagram	
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Figure	13.	SysML	Activity	Diagram	

	
	

	
Figure	14	SysML	Requirement	Diagram	
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3.2.2 EXECUTE	

In	the	Execute	views,	Figure	15,	the	System	Engineer	can	curate	previously	run	tradespace	explorations	or	run	a	
new	study	by	using	 the	declared	constraints	 for	 the	Parametric	Diagrams	 in	a	 larger	orchestrated	model	based	
simulation.	This	larger	model	based	simulation	can	be	automatically	generated	based	on	the	PAR	diagrams	which	
can	be	exercised	using	the	Execute	run	interface.	Current	functionality	allows	for	exploring	connected	constraint	
blocks	 using	 a	 Latin	 Hypercube	 Design	 of	 Experiments	 (DoE).	 Future	 capability	 will	 allow	 users	 to	 seamlessly	
execute	Monte	Carlo	Simulations,	other	DoEs,	and	optimization	techniques	to	drive	the	tradespace	sampling.	
	

	
Figure	15.	Execute	View	

	
Manage	
For	 curating	 the	 different	 generated	 tradespaces,	 the	 user	 can	 get	 a	 management	 overview	 of	 the	 different	
studies	previously	completed	or	currently	running	on	a	per	constraint	basis.	The	user	can	then	delve	into	each	the	
tradespace’s	details	including	the	variables	and	ranges	used	as	well	as	the	generation	design	method	along	with	
the	 number	 of	 cases	 completed	 or	 failed.	 Note	 failed	 cases	 can	 be	 due	 to	 violation	 of	 the	 constraints	 value	
properties	 lower	 and	 upper	 bounds	 e.g.	 cases	 that	 yield	 negative	 mass	 values.	 Additionally,	 the	 user	 can	
download	a	copy	of	the	tradespace	data	as	a	csv	file	for	use	in	other	tools	or	delete	unneeded	tradespaces.		
	
Run	
When	deciding	to	run	a	new	exploration	of	a	constraint	the	user	can	specify	which	subset	of	parameters	from	the	
constraints	input	value	properties	to	vary	and	how.	For	example	with	the	helicopter	SMR	Analysis,	Figure	17,	the	
Composite	Cost	Ratio	 and	deciding	 to	 vary	 it	 uniformly	between	 roughly	20,000	and	71,000	USB/lb.	Constraint	
value	properties	not	added	to	vary	will	to	the	be	set	to	their	default	values.		
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Figure	16.	Manage	View	

	
	

	
Figure	17.	DoE	Parameter	Specification	

	
After	specifying	which	top	level	parameters	to	vary	and	their	ranges	the	user	can	click	on	the	`Run`	tab	at	the	top	
to	specify	the	number	of	cases,	design	method,	add	description	and	change	the	name,	Figure	18.	Additionally	the	



44	
	

worker	can	be	changed	between	local	and	HPC.	If	the	worker	is	left	as	local	the	job	will	be	schedules	on	the	local	
OpenMDAO	job	queue	rather	than	the	HPC.	The	HPC	worker	will	be	discussed	in	Section	4	(ERSTAT	Alignment).	
	

	
Figure	18.	Execute	Run	View	

	
Clicking	on	the	start	button	will	then	queue	the	tradespace	generation	task	with	the	current	configuration	on	the	
specified	worker.	 As	 the	 tradespace	 is	 running,	 status	messages	will	 be	 sent	 back	 to	 the	Manage	 view	 for	 the	
current	constraint.	Once	all	 the	 tradespace	cases	are	 finished	being	evaluated	 it	 can	be	 selected	 in	 the	Explore	
view	to	begin	to	filter	and	analyze	the	different	alternatives.	
	
3.2.3 EXPLORE	

In	 the	 Explore	 views,	 the	 data	 generated	 by	 the	 tradespace	 generator	 using	 the	 Explore	 interface	 can	 be	
processed.	Current	functionality	 implements	a	customizable	dashboard	with	coordinated	views,	Figure	19,	so	as	
the	user	brushes	on	one	plot,	that	selection	is	reflected	in	the	others.	Additionally	the	value	hierarchy	from	the	
Requirements	 specified	 from	above	provides	 a	means	 to	 score	 the	different	 system	design	alternatives.	 Future	
functionality	 will	 add	 other	 visualizations,	 e.g.,	 Parallel	 Coordinates,	 Scatterplot	matrices,	 and	 additional	 value	
transformations.	
	
The	core	of	the	explore	view	is	the	same	Analysis	of	Alternatives	(AoA)	module	that	was	developed	and	integrated	
into	ERS	TradeStudio’s	TradeAnalyze	and	will	be	discussed	in	additional	detail	in	Section	7	Analysis	of	Alternatives	
Module.	
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Figure	19.	AoA	Dashboard	View	

	
	
		

3.3 SOFTWARE	ARCHITECTURE	

To	support	the	dynamic	nature	of	the	System	Engineering	workflow	there	need	to	be	a	variety	of	ways	to	interact	
with	 the	 core	 data	 model	 of	 the	 ERS	 TradeBuilder	 v1.4.1,	 Figure	 20.	 One	 of	 largest	 change	 from	 the	 ERS	
TRADESPACE	Tool	v1.0	software	architecture	is	the	update	of	the	IPython	Notebook	to	the	Jupyter	Notebook	and	
the	associated	JupyterHub	project.	JupyterHub	is	a	multi-user	server	for	Jupyter	notebooks.	When	a	user	logs	into	
JupyterHub	a	new	docker	container	 is	spawned	specified	to	that	user.	This	helps	to	keep	users	sandboxed	from	
the	main	server	while	allowing	them	the	freedom	of	an	open	environment	for	performing	functions	essential	for	
their	work.		
	
The	other	changes	for	TradeBuilder	v1.4.1	(over	v1.0)	is	better	modularization	of	the	different	code	libraries.	The	
backend	libraries	have	been	packaged	using	the	standard	python	packaging	techniques	so	that	they	can	be	loaded	
with	 a	 `pip	 install`	 command.	 Frontend	 libraries	have	been	updated	 to	use	 the	 standard	npm	 interfaces	 rather	
than	 the	 Bower	 method	 these	 JavaScript	 differences	 will	 be	 discussed	 more	 in	 Section	 3.4	 Components	 for	
TradeStudio	Integration.	By	breaking	apart	the	code	into	independently	installable	packages	the	implementations	
become	more	easily	tested	adding	to	the	general	robustness	and	maintainability	of	the	codebase.		
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Figure	20.	User	Interactions	and	elements	of	the	framework	

	

	
Figure	21.	ERS	Tradespace	Tool	Process	and	Docker	Container	Architecture	
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An	overview	of	the	containers	in	Figure	21	includes:	
• Proxy	–	an	apache	proxy	server	to	forward	requests	to	the	different	services.	One	head	proxy	makes	it	

easy	to	secure	the	multiple	services	behind	a	common	host.	
• Static	–	another	apache	server	that	serves	the	build	ERS	TradeBuilder	tradespace	tool	HTML,	JavaScript,	

CSS,	and	other	assets.	
• ERS-build	–	a	temporary	container	that	houses	the	build	chain	for	processing	the	ERS	Tradespace	Tool	

frontend	code	into	the	static	container	
• Django	–	serves	the	REST	API	that	the	frontend	application	consumes.	This	REST	API	exposes	the	core	data	

objects.		
• Jupyterhub	–	to	spin	up	and	orchestrate	user	specific	scripting	environments	(python,	R…)	for	interacting	

directly	with	the	python	Systems	Engineering	data	models.	
• Websocket	–	pushed	events	and	messages	to	ERS	Tradespace	Tool	users	to	keep	the	model	state	in	sync.	
• Worker	Dashboard	–	simple	webpage	to	view	the	status	of	the	workers	and	jobs	that	are	processing	the	

local	job	queue.	
• Worker	–	processes	OpenMDAO	jobs	that	are	locally	queued.	
• Python-volume	–	a	volume	that	is	mounted	into	the	various	containers	so	the	same	python	code	is	used	

by	the	different	services.	
• Mongo	–	the	MongoDB	service	for	persisting	the	data	
• Redis	–	used	for	message	and	event	passing	as	well	as	queuing	tradespace	jobs.		

3.4 COMPONENTS	FOR	TRADESTUDIO	INTEGRATION	

Paramount	for	TradeStudio	Integration	is	the	packaging	of	JavaScript	modules	into	reusable	component	libraries.	
By	keeping	the	salient	component	code	modular	it	can	more	easily	be	tested	and	maintained.	Additionally	if	the	
reusable	component	is	packaged	correctly	the	amount	of	additional	work	to	use	it	in	different	frontend	is	lower.	
In	the	JavaScript	Node	environment	there	are	a	multitude	of	alternative	package	managers	each	with	their	own	
advantages	and	disadvantages.	
	
JavaScript	package	management	alternatives:	

• NPM	 –	 is	 the	native	Node	Package	Manager	 (NPM)	 for	Node	based	projects.	 The	main	 drawback	 is	 its	
inability	 to	 specify	 component	 file	 dependencies	 beyond	 JavaScript	 without	 additional	 tooling	 like	
webpack	or	browserify.	

• Bower	–	is	a	frontend	asset	package	manager.	The	main	benefit	is	bower	offers	a	native	way	to	specify	all	
the	file	dependencies	(css,	html)	and	not	just	JavaScript.	However	the	community	is	smaller	than	NPM	and	
has	some	inherent	tooling	limitations	like	adding	require	statements	to	import	JavaScript	code.	

• Component	 –	 another	 frontend	 package	manager	 that	 still	 offers	 the	 ability	 to	 specify	 all	 types	 of	 file	
dependencies	but	has	a	much	smaller	user	base.	

• JSPM	–	 is	a	package	manager	built	for	SystemJS	and	the	Universal	Module	loader.	 It	shows	promise	but	
has	lower	adoption	and	is	newer	than	npm	or	bower.	

In	 the	previous	phase	 (SERC	RT-120),	Bower	was	 selected	 to	package	 the	different	modules	as	 all	 the	different	
asset	 files	 could	 be	 specified.	 For	 this	 phase,	 the	 overarching	 TradeStudio	 suite	 moved	 to	 using	 only	 NPM	 to	
package	 the	 reusable	 JavaScript	 code	 to	 reduce	 the	 number	 of	 development	 dependencies	 i.e.	 not	 having	 to	
install	Bower	and	its	additional	tooling.	In	addition	to	selected	NPM,	browserify	was	chosen	to	then	crawl	through	
all	of	the	JavaScript	libraries	to	create	a	single	bundle	for	the	browser	to	load	and	the	other	types	of	static	assets	
were	copied	around	using	helper	scripts.	In	the	future,	moving	to	a	bundling	solution	that	can	process	all	of	the	
asset	types	would	help	achieve	more	reusable	frontend	components.	
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4 ERSTAT	ALIGNMENT	

ERDC	has	been	 in	development	of	 the	ERS	Tadespace	Analysis	 Tool	 (ERSTAT),	 led	by	Dr.	Andrew	Strelzoff.	 This	
toolset	has	been	used	 in	several	rapid	studies	for	programs	across	the	Department	of	Defense,	helping	to	drive	
the	requirements	 for	a	more	 long-term	solution.	Therefore	 in	addition	to	 improving	the	capabilities	of	ERS,	 this	
task	 worked	 towards	 enhancing	 ERSTAT’s	 capabilities	 by	 developing	 and	 integrating	 modules	 from	 ERS	
TradeBuilder.		
	
This	work	initiated	with	two	primary	goals	of	the	ERSTAT	team,	namely:	

	
• Users	need	to	be	self-reliant	when	it	comes	to	recurrent	tasks,	(e.g.,	defining	and	verifying	parameters	in	

a	tradespace,	define	parameters	ranges	for	a	tradespace,	running	a	tradespace).	
• Users	need	to	document	their	analysis	process,	obtain	the	results	generated	by	ERSTAT,	and	be	able	 to	

present	the	results	in	the	necessary	manner	and	context.	

ERDC’s	ERSTAT	team	excels	at	providing	unprecedented	computational	analysis	capabilities	to	government	teams.		
Their	primary	role	consists	in	modernizing	and	parallelizing	legacy	analysis	or	design	tools,	installing	them	on	HPC	
resources,	exercising	the	tools,	and	supporting	the	teams	as	they	evolve	their	projects.	 	This	task	 is	 intended	to	
help	 the	ERSTAT	team	focus	on	 the	 initial	portion	of	 its	efforts	and	be	able	 to	offload	the	more	 labor	 intensive	
portions	associated	with	supporting	the	teams	(primarily	re-defining	and	re-running	tradespaces).	
	
The	team	recognized	that	there	would	be	four	use	cases	that	the	ERS	TradeBuilder	framework	must	support	from	
a	computation/collaboration	perspective.	 	These	are	 illustrated	 in	Figure	22	below.	Use	Case	A	concerns	a	 local	
user,	running	the	framework	on	a	local	VM	and	using	the	computational	resources	of	its	own	personal	computer.		
Use	Case	B	involves	a	group	of	users	accessing	a	webserver	but	limiting	the	execution	of	tradespaces	to	the	CPUs	
on	the	webserver.		Use	Case	C	enhances	Use	Case	B	by	allowing	those	users	to	reach	out	to	an	HPC	resource	and	
submitting	tradespace	execution	jobs	to	it.		Use	Case	D	provides	the	same	HPC	access	but	for	local	independent	
users.	The	goal	of	Task	4	was	to	enhance	the	ERS	TradeBuilder	framework	to	support	Use	Cases	C	and	D.	
	
The	first	step	in	achieving	this	goal	was	ensuring	the	architecture	selected	for	executing	tradespace	would	scale	
when	using	High	Performance	Computing.		The	ERS	TradeBuilder	tool	uses	NASA’s	OpenMDAO	as	the	orchestrator	
for	coordinating	the	execution	of	analyses	 (e.g.,	performance	models,	cost	models,	campaign	simulations).	 	The	
team	had	to	ensure	that	OpenMDAO	would	scale	when	distributing	jobs	to	a	cluster.		For	this	purpose,	the	team	
tested	the	weak	and	strong	scaling	characteristics	of	an	“embarrassingly	parallel”	problem	that	would	distribute	
many	individual	runs	of	a	computationally	inexpensive	model.		The	team	used	ERDC’s	ground	vehicle	model	as	the	
test	case.	
	
The	strong	scaling	results	proved	that	the	problem	scales	linearly	up	to	100	computational	cores	(as	evidenced	by	
Figure	23),	dropping	the	time	required	to	analyze	the	problem	from	8-10	minutes	to	under	10	seconds.		The	weak	
scaling	analysis	studied	how	many	points	could	you	analyze	in	a	given	amount	of	time.		Again,	the	results	proved	
satisfactory,	 as	evidenced	by	 the	 linear	 relationship	 (in	 log-log-scale)	 in	 Figure	24.	 	 The	 results	proved	 that	 it	 is	
possible	 to	 run	all	possible	combinations	of	 the	sample	problem	(approximately	1	billion)	 in	under	2	minutes	 if	
30,000	cores	are	used.	 	However,	 it	 is	 important	 to	note	 that	 this	 time	did	not	account	 for	 the	MPI	setup	 time	
(which	is	approximately	10	to	15	minutes	for	30,000	cores).		The	strong	and	weak	scaling	results	proved	that	using	
OpenMDAO’s	MPI	 implementation	would	perform	satisfactorily	and	gave	the	team	the	necessary	confidence	to	
develop	the	HPC	extensions	for	the	ERS	TradeBuilder	framework.	
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Figure	22.	ERS	TradeBuilder	Framework	Collaboration/Computation	Use	Cases	

	
	

	
Figure	23.	Run	time	required	to	analyze	10	million	vehicles	vs.	number	of	computational	cores	(strong	scaling	analysis)	

	
	

Fully	Local

Local	VM	with	Local	
Database	Server

Local	CPU(s)

Web-based

Remote	web-server	+	access	
restricted	database	server

Webserver’s	CPUs

Ap
pl
ic
at
io
n	
/	
Da

ta
ba

se
Tr
ad

es
pa

ce
	

Ex
ec
ut
io
n

Web-based	+	HPC Local	+	HPC

Remote	web-server	+	access	
restricted	database	server

Local	VM	with	Local	
Database	Server

U
se
	C
as
e

Super	Computers Super	Computers

A B C D



50	
	

	
Figure	24.	Number	of	vehicles	analyzed	as	a	function	of	processors	(weak	scaling	analysis)	

	
The	ERS	TradeBuilder	HPC	extension	would	enabled	users	to	submit	jobs	to	ERDC’s	High	Performance	Computing	
resources	 (namely	 Topaz5),	monitor	 the	 execution	of	 said	 jobs,	 and	 retrieve	 the	 results.	 	 The	 ERS	 TradeBuilder	
framework	 was	 extended	 (as	 shown	 in	 Figure	 25)	 by	 creating	 a	 custom	 “worker”	 that	 connects	 to	 the	 sub	
submission	queue	(built	on	Redis).		This	worker	interfaces	with	ERDC’s	HPC	resources	using	ERDC’s	User	Interface	
Toolkit	(UIT).		
	

	
Figure	25.	ERS	TradeBuilder	integration	with	ERDC's	HPC	resources	

The	ERS	HPC	worker	follows	the	processes	described	in	Figure	26.	The	process	begins	with	a	request	from	the	user	
to	 utilize	 the	 HPC	 resources.	 	 The	 ERS	 TradeBuilder	 server	 then	 requests	 the	 user	 to	 provide	 the	 necessary	
information	to	login	through	UIT.		At	this	time,	the	only	method	supported	is	the	Kerberos	DoD	HPC	OpenID	with	

																																																													
	
5 https://erdc.hpc.mil/hardware/index.html 
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Yubikey.	 	 In	order	to	support	CAC	authentication,	UIT	would	have	to	be	updated.	Once	the	user	submits	his/her	
username,	password	and	the	one-time	password	generated	by	the	Yubikey,	the	ERS	TradeBuilder	server	forwards	
the	information	to	initiate	the	handshake	with	UIT.		UIT	replies	with	the	session	id,	and	a	prompt.	This	prompt	can	
either	be	a	declined	authentication	or	a	request	for	the	one-time	password,	 in	which	case	the	ERS	TradeBuilder	
forwards	the	one-time	password	to	finalize	the	handshake.	The	UIT	server	then	replies	with	a	Kerberos	token	and	
a	prompt	that	is	forward	to	the	client.		The	token	is	never	stored	nor	held	in	memory	on	the	server,	only	on	the	
user’s	browser.	 	With	the	token	the	user	can	submit	requests	to	the	HPC	resources.	 	The	ERS	TradeBuilder	user	
interface	allows	for	the	submission	of	tradespace	generation	jobs,	checking	the	status	of	a	job,	and	retrieving	the	
tradespace	data	 to	 the	ERS	TradeBuilder	 server	 for	 further	analysis.	Finally,	 the	user	can	 log	out	of	 the	service,	
which	sends	a	“destroy	token”	command	to	UIT.		As	a	precautionary	measure,	UIT	expires	tokens	after	24	hrs.	
	

	
Figure	26.	User	interface	for	utilizing	ERDC's	supercomputers	from	ERS	TradeBuilder	

The	work	conducted	under	the	ERSTAT	alignment	manifested	 itself	on	the	ERS	TradeBuilder	tool	 in	the	Execute	
page,	under	the	“Run”	tab’s	“workers”	choice	(Figure	27).		There	are	two	options	to	run	tradespace,	either	‘local’	
or	‘hpc’.		Local	uses	the	CPUs	on	the	ERS	TradeBuilder	server.		When	the	user	selects	‘hpc’,	they	are	prompted	to	
login	 using	 their	 DoD	HPC	OpenID.	 The	 information	 required	 is	 the	 principal	 account	 login	 (the	 field	 is	 labeled	
‘Principal’	in	order	to	keep	it	consistent	with	other	DoD	HPC	OpenID	systems),	the	Kerberos	password	and	the	one	
time	token	generated	by	the	Yubikey.	
	
If	the	authentication	is	successful,	the	user	will	be	presented	with	the	UIT	Kerberos	prompt	that	will	indicate	when	
his	or	her	password	will	expire,	a	list	of	hosts	to	connect	to	(by	default	the	system	selects	topaz01).		At	the	time	of	
this	writing,	 only	 a	 few	 accounts	 on	 Topaz	 had	 been	 configured	 to	 receive	 jobs.	 	 The	 user	 can	 then	 select	 the	
account	(which	shows	as	blank	on	Figure	28	because	the	user	had	no	access	to	an	HPC	account	when	the	screen	
capture	was	taken).		The	user	can	also	select	the	queue	to	submit	the	job	to,	the	number	of	processors	they’d	like	
to	reserve	and	the	number	of	hours	the	reservation	should	be	for	after	the	job	is	started.		It	is	important	to	note	
that	if	the	user	makes	a	reservation	for	1	hour,	but	the	job	takes	longer	to	run,	the	system	will	forcefully	end	the	
running	processes	after	an	hour	has	elapsed.		It	is	critical	that	the	reservation	time	is	estimated	correctly.	
	
The	current	implementation	requires	that	all	executable	code,	e.g.,	OpenMDAO	components,	is	also	installed	on	
the	 user’s	 account	 in	 the	 system	 they	 are	 submitting	 the	 job	 to.	 	 It	 is	 not	 possible	 to	 upload	 an	 OpenMDAO	
component	to	the	ERS	TradeBuilder	server	and	try	to	execute	it	on	the	HPC	resources.		The	one	exception	to	this	
is	 the	 “function”	which	 uses	OpenMDAO’s	 ExecComp	 to	 dynamically	 generate	 an	 executable	 component.	 	 The	
team	is	currently	evaluating	other	means	to	be	able	to	submit	the	python	executable	code	with	the	tradespace	
job	submission	to	minimize	the	amount	of	effort	on	the	users’	part.		Conversely,	it	is	prudent	to	require	users	to	
go	through	a	vetting	process	for	submitting	their	models	for	review	before	executing	them	on	the	HPC	systems.	
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Figure	27.	HPC	Access	Via	the	Execute	Page	

	
Figure	28.	Screen	capture	of	the	HPC	interface	after	successful	authentication	
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Under	this	effort,	the	team	also	provided	assistance	to	the	ERSTAT	team	with	the	use	of	analysis	tools,	primarily	
NASA’s	OpenVSP6.	 	The	work	consisted	 in	developing	a	means	to	 integrate	OpenVSP	and	the	Jupyter	Notebook,	
e.g.,	 an	 interface	 for	 OpenVSP,	 a	 visualizer	 for	 the	 3D	models	 in	 the	 notebook.	 The	majority	 of	 these	 support	
efforts	 were	 focused	 on	 methods	 to	 compile	 the	 Python	 interface	 for	 OpenVSP	 on	 a	 Linux	 environment	 and	
writing	 an	 improved	 pythonic	 interface	 built	 atop	 the	 basic	OpenVSP	 one	 to	 facilitate	 the	 interaction	with	 the	
models.		A	JavaScript	STL	viewer	was	extended	to	allow	users	to	visualize	the	3D	models	generated	by	OpenVSP	
inside	 the	 notebook.	 Future	 work	 could	 further	 develop	 the	 Python	 interface	 to	 OpenVSP	 to	 facilitate	
manipulation	 and	 visualization	 of	 the	 models	 in	 real-time.	 	 The	 GTRI	 team	 has	 reached	 out	 to	 the	 OpenVSP	
development	team	who	are	interested	in	having	someone	extend	their	python	interface.	
	
In	summary,	the	new	HPC	interface	in	the	ERS	TradeBuilder	framework	will	enable	users	that	have	the	analyses	
setup	on	the	HPC	to	modify	and	execute	their	own	tradespaces,	enabling	the	ERSTAT	team	to	focus	on	what	they	
do	best	without	having	to	provide	day-to-day	support	to	its	users.	
	
Future	work	could	further	extend	this	by	allowing	capable	users	to	submit	execution	runs	to	the	HPC	that	do	not	
need	to	be	pre-loaded	into	the	HPC	resources.		The	interface	can	also	be	extended	to	provide	guidance	to	users	as	
to	the	time	it	may	take	to	execute	a	particular	tradespace,	minimizing	the	overestimation	necessary	to	ensure	the	
job	is	not	cut	off	prematurely.	
	
	 	

																																																													
	
6 http://www.openvsp.org/ 
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5 SYSTEM	ENGINEERING	ANALYSIS	MODULES	

	
A	twofold	approach	for	building	systems	engineering	modules	was	utilized,	with	the	research	and	development	of	
both	 R	 (statistical	 programming	 language)	 and	 Python	 analytical	 tools.	 In	 pursuant	 of	 the	 original	 proposed	
concept	 for	 system	 analysis	 modules,	 the	 ability	 to	 create	 a	 notebook	 that	 accepts	 R	 language	 coding	 was	
included	 in	 the	 Jupyter	 Hub/Notebook	 tools.	Methods	were	 developed	 to	 allow	 the	 reading	 of	 the	HDF5	 files	
created	by	TradeBuilder	runs	into	R,	allowing	notebook	users	to	perform	R-based	analysis	on	the	tradespace	data.	
	
In	 order	 to	 better	 integrate	 the	 tradespace	 analysis	 with	 the	 front-end	 framework,	 follow	 on	 efforts	 were	
transitioned	to	supporting	tradespace	analysis	using	Python,	as	 it	would	allow	for	front-end	modules	to	 interact	
with	the	analysis	modules	through	the	ReST	API	more	seamlessly.	Using	Python	for	system	engineering	analysis	
keeps	these	modules	consistent	with	the	rest	of	 the	backend	Python	development,	helping	to	ensure	a	smooth	
integration	with	existing	Tradespace	capabilities.	Python	syntax	is	also	the	basis	for	experienced	users	to	develop	
projects	 in	 the	 Jupyter	 Hub/Notebook	 environment,	 and	 using	 Python	 to	 utilize	 systems	 engineering	 analysis	
modules	would	provide	continuity	for	the	ERS	Tradespace	user.	Moreover,	a	number	of	existing	Python	modules,	
(e.g.	 Numpy,	 SciPy,	 Pandas,	 Statsmodels,	 etc.)	 provide	 an	 existing,	 proven	 framework	 of	 tools	 consistent	 with	
those	available	in	R.	
	
The	 following	 core	 systems	 engineering	 analysis	 modules	 and	 functionality	 was	 completed	 during	 this	
development	phase:	
	
Design	of	Experiments:	

• The	 core	 design	 of	 experiments	 methods	 was	 augmented	 with	 new	 experiment	 types,	 including	 Full	
Factorial,	 a	 Plackett-Burman	 screening	 design,	 and	 a	Monte	 Carlo	 Simulation	 (only	 currently	 accessible	
through	the	notebooks).	

• The	 capability	 to	 link	 and	 specifically	 purpose	 (optimization,	 surrogate	 model	 fitting,	 validation,	 etc.)	
multiple	experiments	to	a	Tradespace	was	developed.	

• All	case	sampling	experiments	were	implemented	as	using	an	OpenMDAO	driver	capable	of	parallel	runs	
in	conjunction	with	the	added	HPC	capability.	

	
Optimization:	

• The	 ability	 to	 drive	 constraint	 sampling	 with	 optimization	 based	 methods	 was	 integrated	 into	 the	
Tradespace	backend.		

• A	 Non-dominated	 Sorting	 Genetic	 Algorithm	 (NSGA-II)	 was	 integrated	 into	 TradeBuilder	 for	 multi-
objective	optimization	of	constraint(s).	

• A	module	was	 implemented	 to	 allow	 a	 suite	 of	 single	 objective	 optimization	methods,	 including	many	
gradient-based	(analytical	and	numerical)	methods.	This	is	based	on	the	SciPy	optimization	module.	

• Other	 optimization	 libraries	 could	 be	 integrated	 with	 reduced	 effort	 if	 they	 have	 existing	 OpenMDAO	
plugins	(e.g.,	DAKOTA’s	pydakdriver).	

	
Surrogate	Modeling:	

• A	 simple	 correlation	 tool	 was	 generated	 to	 indicate	 statistical	 correlation	 between	 generated	 data	
columns	and	provide	a	rough	guide	to	surrogate	model	generation.	

• A	 core	 module	 was	 developed	 to	 allow	 for	 flexible	 generation	 of	 surrogate	 models	 based	 on	 data	
generated	by	Tradespace.	Three	core	surrogate	modeling	techniques	were	made	available:	

o Ordinary	 Linear	 Regression	 –	 allows	 for	 regression	 and	 surrogate	modeling	 based	 on	 Response	
Surface	Methods.	(based	on	a	Statsmodels	module)	
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o Artificial	Neural	Networks	–	allows	for	training	of	simple	neural	networks	to	be	used	as	surrogate	
models.	(based	on	the	PyBrain	module)	

o Kriging	–	allows	for	Gaussian	Process-based	Kriging	surrogate	models	to	be	generated	and	trained.	
(based	on	a	Scikit-Learn	module)	

• Surrogate	 models	 were	 expanded	 to	 include	 the	 ability	 to	 perform	 a	 preliminary	 suite	 of	 numerical	
goodness	of	fit	and	validation	tests.	The	implemented	tests	 include	R2,	Adjusted-R2,	Root	Mean	Squared	
Error	(RMSE),	and	normalized	RMSE.	These	can	be	associated	with	any	single	experiment	dataset,	or	any	
combination	of	datasets.	

A	number	of	ongoing	research	and	development	efforts	are	also	still	underway	on	this	task,	with	an	eye	to	future	
integration	into	the	formal	toolset:	
	

• The	 ability	 to	 generate	 and	 run	 new	 constraints	 based	 on	 fitted	 surrogate	 models	 (as	 OpenMDAO	
components)	to	quickly	create	new	data	has	been	developed	and	is	undergoing	integration	into	the	larger	
toolset.	

• A	 “batch	 mode”	 that	 allows	 surrogate	 model-based	 constraints	 (and	 other	 capable	 OpenMDAO	
components)	 to	 calculate	 large	 batches	 of	 experiment	 points	 at	 once	 has	 been	 developed	 and	 is	
undergoing	 integration	 into	 the	 larger	 toolset.	This	can	serve	 to	reduce	overhead,	and	 facilitate	quicker	
calculation	of	large	numbers	of	design	points	using	only	local/server	resources.		

• The	ability	to	generate	surrogate	models	with	the	tool	frontend	is	under	development.	
• Automated	 surrogate	 modeling	 has	 been	 researched	 and	 explored	 with	 the	 goal	 of	 creating	 a	 multi-

fidelity	 approach	 to	 surrogate	 generation	 for	 users	 with	 varying	 degrees	 of	 experience.	 A	 number	 of	
indicators	 (parameter	 type/count,	 runtime	environment,	 response	nature,	etc.)	 could	be	gathered	 from	
the	Tradespace	to	guide	the	development	of	surrogate	modeling.		

• Advanced	topics	for	surrogate	modeling	are	also	being	explored	with	the	desire	to	integrate	both	active	
learning	 to	 more	 efficiently	 sample	 data	 for	 surrogate	 model	 generation,	 and	 multi-surrogates	 for	
combining	multiple	models	to	generate	the	most	accurate	representation	of	complex	constraints.	
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6 SYSML	MATURATION	MODULE	

	
The	SysML	module	in	ERS	TradeBuilder	acts	as	the	primary	interface	for	viewing	and	interacting	with	the	system	
specification	 in	 the	 form	 of	 requirements	 diagrams,	 work	 breakdown	 structures,	 and	 constraints.	 The	 SysML	
capability	 of	 the	 ERS	 Tradespace	 Tools	 v1.0	 (SERC	 RT-120)	 used	 front-end	 JavaScript	 libraries	 and	 technologies	
that	have	been	deprecated	since	the	v1.0	release.	The	primary,	open	source	JointJS	library	used	to	render	the	SVG	
elements	 in	 the	 original	 SysML	 tool	 was	 commercialized	 and	 support	 was	 dropped	 for	 modern	 browsers.	
Additionally,	the	previous	SysML	code	was	tightly	integrated	with	the	front-end	ERS	Tradespace	Toolset	code	in	a	
way	that	made	capabilities	difficult	to	extend	and	made	the	SysML	module	unusable	in	application	other	than	the	
tradespace	 toolset	 itself.	 Therefore,	 work	 on	 the	 SysML	 module	 for	 this	 effort,	 and	 released	 under	 the	 ERS	
TradeBuilder	 v1.4.1	banner,	primarily	 focused	on	 refactoring	 the	 code	base	 to	 incorporate	 the	 latest	 JavaScript	
libraries	for	SVG	rendering,	as	well	as	making	the	SysML	tool	modular	and	independent	of	the	TradeBuilder	front-
end	so	that	it	may	be	used	across	other	web-based	applications.	
	
The	elements	of	the	SysML	specification	that	are	useful	for	system	modeling	in	ERS	TradeBuilder	were	identified	
and	 prioritized	 according	 to	 the	 needs	 of	 ERDC.	 The	 SysML	 specification	 features	 currently	 included	 in	 the	
TradeBuilder	consist	of	relevant	elements	that	enable	the	use	of	Block	Definition,	Parametric,	Requirement,	and	
Activity	diagrams.	Table	1	lists	the	elements	utilized	in	TradeBuilder	v1.4.1	from	the	SysML	v1.47	specification.	
	

Table	1.	SysML	Specification	Features	Included	in	TradeBuilder	v1.4.1	

Diagram	 Element	 Description	
Block	Definition	 Block	Node	 The	Block	is	the	fundamental	modular	unit	for	describing	system	

structure	in	SysML	
Block	Definition	 Composite	Association	Path	 A	composite	association	path	relates	a	whole	to	its	parts	
Parametric	 Constraint	Parameter	Node	 A	constraint	parameter	is	a	special	kind	of	property	that	is	used	to	

bind	parameters	
Parametric	 Value	Binding	Path	 Binding	connectors	connect	constraint	parameters	to	each	other	

and	to	value	properties	
Requirement	 Requirement	Node	 A	requirement	specifies	a	capability	or	condition	that	must	be	

satisfied,	a	function	that	a	system	must	perform,	or	a	performance	
condition	a	system	must	achieve	

Requirement	 Derivation	Path	 A	derive	relationship	occurs	between	a	source	requirement	and	a	
derived	requirement,	based	on	analysis	of	the	source	requirement	

Activity	 Primitive	Action	Node	 Primitive	actions	include	object	access/update/manipulation	and	
value	actions	

Activity	 Initial	Node	 When	an	activity	starts	executing	a	control	token	is	placed	on	each	
initial	node	in	the	activity	

Activity	 Activity	Final	Node	 When	a	control	or	object	token	reaches	an	activity	final	node	
during	the	execution	of	an	activity,	the	execution	terminates	

Activity	 Object	Flow	Path	 Object	flows	connect	inputs	and	outputs	
	
The	JavaScript	library	developed	to	render	the	SysML	diagrams	and	elements	for	the	TradeBuilder	SysML	Module	
has	 been	 designed	 to	 be	 extensible	 and	 to	 facilitate	 the	 addition	 of	 more	 elements	 from	 the	 SysML	 v1.4	
specification	in	the	future.	As	part	of	the	process	of	prioritizing	SysML	specification	features	needed	by	ERDC	for	
ERS,	 a	 roadmap	 was	 created	 to	 guide	 future	 development	 of	 the	 SysML	 module.	 The	 roadmap	 groups	 and	
prioritizes	 SysML	 specification	 features	 for	 future	 releases	 of	 TradeBuilder.	 The	 roadmap	 and	 required/desired	
specification	 features,	 outlined	 in	 Table	 2,	 include	 two	 new	 diagram	 types	 that	 would	 be	 useful	 for	 system	

																																																													
	
7 http://www.omg.org/spec/SysML/1.4/ 
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modeling	in	TradeBuilder,	the	Internal	Block	and	Use	Case	diagrams,	as	well	as	several	features	and	elements	in	
Block	 Definition,	 Requirement,	 and	 Activity	 diagrams	 that	were	 desired,	 but	 not	 required,	 for	 the	most	 recent	
release	of	the	TradeBuilder	v1.4.1.		
	

Table	2.	Roadmap	for	Required	and	Desired	SysML	Features	

Diagram	 Feature	 Desired/Required	 Release		
(Version	Number	

corresponds	to	SysML	
Module)	

Block	Definition	 Interface	Compartments	for	
Block	Node	

Required	 v0.2	

Reference	Association	Path	 Required	 v0.2	
Multiplicity	 Required	 v0.2	
Actor	Node	 Desired	 v0.2	

Association	Block	Path	and	
Node	

Desired	 v0.2	

Generalization	Path	 Desired	 v0.2	
Internal	Block	 Part	Node	 Required	 v0.2	

Connector	Path	 Required	 v0.2	
Connector	Property	Path	and	

Node	
Desired	 v0.3	

Requirement	 Containment	Path	 Required	 v0.2	
Satisfaction	Path	 Required	 v0.2	
Package	Node	 Desired	 v0.2	

Refinement	Path	 Desired	 v0.2	
Trace	Path	 Desired	 v0.2	

Activity	 Merge	Node	 Required	 v0.2	
Decision	Node	 Required	 v0.2	
Join	Node	 Required	 v0.2	
Fork	Node	 Required	 v0.2	

Flow	Final	Node	 Required	 v0.2	
Control	Flow	Path	 Required	 v0.2	

Use	Case	 Actor	Node	 Desired	 v0.3	
Use	Case	Node	 Desired	 v0.3	
Subject	Node	 Desired	 v0.3	

Association	Path	 Desired	 v0.3	
Extension	Path	 Desired	 v0.3	
Inclusion	Path	 Desired	 v0.3	

Generalization	Path	 Desired	 v0.3	
Miscellaneous	 Allocation	Path	 Desired	 v0.3	

Comments	and	Notes	 Desired	 v0.3	
	
In	addition	to	a	new	diagram	and	new	specification	features,	future	development	of	the	SysML	module	will	also	
include	an	effort	to	improve	the	user	experience	by	allowing	the	user	to	save	multiple	versions	of	diagrams,	and	
enabling	 users	 to	 view	multiple	 diagrams	 at	 the	 same	 time	within	 the	 SysML	module.	 Currently,	 diagrams	 are	
automatically	 generated	 using	 database	 calls	 and	 layout	 algorithms.	 Future	 work	 will	 allow	 users	 to	 not	 only	
automatically	generate	diagrams	based	on	the	system	architecture,	but	 to	also	modify	 the	diagram	 layouts	and	
have	those	changes	saved.	For	example,	a	BDD	could	be	collapsed	to	show	only	one	branch	of	the	system	work	
breakdown	 structure,	 and	 then	 saved	 as	 a	 new	 diagram	 that	 could	 be	 accessed	 by	 other	 uses	 and	 further	
modified.	One	key	feature	that	will	enable	this	functionality	is	a	tool	bar,	or	menu,	for	the	SysML	module	that	will	
enhance	the	user	interface	to	make	editing	or	viewing	diagrams	an	intuitive	and	seamless	experience.	Interlinking	
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the	 diagrams	 in	 such	 a	 way	 that	 users	 can	 switch	 diagram	 views	 by	 clicking	 elements	 (for	 example,	 clicking	 a	
Constraint	Block	in	a	Block	Definition	Diagram	to	access	the	corresponding	Parametric	Diagram)	will	also	help	to	
enhance	the	user	experience	in	future	versions	of	the	tool.	
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7 ANALYSIS	OF	ALTERNATIVES	MODULE	

	
The	Analysis	of	Alternative	(AoA)	module	required	developing	a	tool	that	could	be	integrated	into	TradeAnalyzer	
(formerly	referred	to	as	TradeStudio,	which	is	now	the	term	for	the	umbrella	suite	which	includes	TradeBuilder,	
developed	 by	GTRI,	 and	 TradeAnalyzer,	 developed	 by	 ERDC).	 	 TradeAnalyzer	 should	 allow	users	 to	 perform	 an	
analysis	of	alternatives,	which	as	 it	became	clear	 through	 the	execution	of	 this	 contract,	 can	mean	a	variety	of	
things.		It	can	be	argued	that	the	entire	ERS	TradeBuilder	tool	is	intended	to	perform	(as	one	of	its	roles)	analysis	
of	alternatives.	The	first	order	of	business	was	developing	an	AoA	Roadmap,	which	was	submitted	as	an	interim	
report.		This	roadmap	specified	a	series	of	capabilities	required	to	perform	an	AoA,	which	were	used	to	guide	the	
development	 of	 the	 AoA	module.	 The	module	 was	 then	 integrated	 into	 both	 TradeAnalyzer	 and	 TradeBuilder	
tools.	
	

7.1 ANALYSIS	OF	ALTERNATIVES	ROADMAP	

At	 its	 core,	 an	 AoA	 is	 an	 evaluation	 of	 potential	 alternative	 solutions	 according	 to	 their	 performance,	 system	
characteristics,	or	other	criteria	deemed	highly	important	to	key	stakeholders	alongside	the	estimated	costs	and	
resources	 required	 to	 develop	 and	 field	 such	 a	 solution.	 	 An	 AoA	 may	 lead	 to	 insights,	 high-level	 solution	
decisions,	 or	 refinements	 as	 part	 of	 an	 informal	 or	 formally	 documented	 evaluation.	 	 In	 the	 DoD	 an	 AoA	 is	 a	
formally	 required	 part	 of	 the	 Defense	 Acquisition	 System	 (DAS)	 process	 with	 significant	 levels	 of	 associated	
planning,	study,	and	oversight.	The	‘Analysis	of	Alternatives	Roadmap’	discusses	how	an	AoA,	both	as	an	informal	
supporting	tool	and	a	formal	mandate,	can	mature	to	more	effectively	address	the	right	requirements	questions	
needed	by	senior	decision	makers.		(Sitterle,	Balestrini-Robinson,	Freeman,	Ender,	2016)	
	
Every	 AoA	 will	 be	 different	 in	 terms	 of	 nuances,	 context,	 available	 information,	 etc.	 for	 a	 given	 system	 being	
evaluated	at	a	specific	point	in	the	Defense	acquisition	system	process.		Consequently,	there	will	be	no	one-size-
fits-all	methodology	applicable	to	all	AoAs.		The	roadmap	report	discusses	major	concepts	vital	to	maturing	AoAs	
to	successfully	support	DoD	needs	and	the	goals	of	ERS	relating	to	resilient	design	and	a	resilient	design	process.		
It	explains	why	these	aspects	are	necessary	and	how	they	will	support	materiel	development	decisions.			
	
Through	the	roadmap,	we	sought	to	elucidate	on	future	directions	that	are	needed	to	meet	the	goals	of	AoAs	in	
support	 of	 highly	 dynamic	 and	 complex	 systems	 engineering	 problems.	 	 The	 early	 stages	 of	 complex	 defense	
system	design	are	characterized	by	immature	knowledge.		Design	concepts	may	still	be	somewhat	nebulous,	new	
technologies	underlying	 these	designs	may	still	be	 in	development,	 requirements	have	yet	 to	be	 solidified	with	
respect	 to	 compromises	 that	must	 be	made	 across	 operational	 needs,	 stakeholders,	 and	 design	 tradeoffs,	 etc.		
Many	AoAs	of	 varying	 levels	with	 respect	breadth	across	design	alternatives	and	operational	 System	of	System	
(SoS)	 considerations	 and	 depth	 with	 respect	 to	 level	 of	 detail	 and	 available	 data	 for	 specific	 potential	 design	
architectures	 will	 take	 place	 prior	 to	 defining	 the	 study	 plan	 for	 the	Milestone	 A	 AoA	 of	 the	 DoD	 Acquisition	
process.			
	
AoAs	 are	often	 conducted	 in	 a	 large	part	 through	exploration	of	 a	 tradespace.	 	 A	 tradespace	 is	 defined	 as	 the	
complete	enumeration	of	 the	 system	alternative	design	variables	 together	with	 the	 set	of	program	and	system	
parameters,	attributes,	and	characteristics	required	to	satisfy	performance	standards	associated	with	each	system	
alternative.		A	tradespace	is,	in	effect,	the	complete	solution	space.		Using	a	matrix	analogy,	each	row	represents	a	
specific	 design	 alternative	 with	 its	 associated	 characteristics	 and	 performance	 measures.	 	 Each	 column	 then	
represents	a	specific	design	variable/	system	characteristic	or	performance	measure	either	specified	(i.e.,	design	
variables)	or	evaluated	(i.e.,	performance	measures)	for	each	alternative.	 	Each	entry	 in	this	matrix	need	not	be	
singular,	but	could	be	an	array	or	other	more	complicated	representation	of	data.	
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So,	 it	 follows	 that	 to	 explore	 a	 tradespace	 as	 part	 of	 an	 AoA,	 one	 must	 first	 generate	 that	 tradespace.	 	 The	
roadmap	discusses	near	and	longer	term	priorities	that	address	the	end-to-end	problem:		
	

• synthesizing	requirements,		
• system	and	problem	specification,		
• transformation	through	a	suite	of	various	locally-	and	non-locally	hosted	M&S	components,		
• setting	 the	 conditions	 for	 and	 managing	 the	 execution	 of	 the	 integrated	 models	 in	 order	 to	 create	 a	

tradespace,	and		
• mapping	 the	 output	 measures	 on	 which	 tradeoffs	 will	 be	 assessed	 to	 stakeholder	 needs	 through	 a	

dynamic	decision	analysis	well-tied	to	the	metadata.			

This	 perspective	 brings	 model-based	 systems	 engineering	 (MBSE),	 multidisciplinary	 design	 analysis	 and	
optimization	(MDAO),	and	multi-criteria	decision	making/	analysis	(MCDM	/A)	together	to	enable	the	exploration	
of	 a	 larger	 number	 of	 design	 concepts,	 variations	 within	 designs,	 operational	 variations,	 mission	 threads,	 etc.			
Together,	this	synthesis	will	enable	decision	makers	to	understand	the	relationships	across	projected	capabilities,	
costs,	 risks,	and	compromises	that	may	be	necessary	to	best	 facilitate	achievement	of	system	(and	operational)	
objectives.			It	is	important	to	note	that	not	all	insights	with	respect	to	measures	and	metrics	within	an	AoA	will	be	
directly	quantifiable	and	sortable.		Similarly,	the	dynamic	narrative	for	data	(tradespace)	exploration	and	analysis	
becomes	critical	to	understanding	the	insights	gleaned.		Any	one	exploration	or	analysis	path	may	produce	similar	
or	completely	different	insights	from	another.		To	realize	a	decision-centric	AoA,	we	therefore	need	to	be	able	to	
capture	and	communicate	the	“Living	Narrative”	of	the	exploration	or	analysis	process.	
	
There	 are	many	 concepts	 throughout	 the	 roadmap	 that	 inter-relate	 and	 overlap	 at	 various	 stages	 of	 the	 AoA	
process.		While	they	are	in	some	cases	inseparable,	despite	being	described	in	different	sections,	they	cannot	all	
be	 implemented	 at	 once.	 	 This	 roadmap	 therefore	 characterizes	 challenges	 facing	 AoAs	 supporting	 defense	
system	 development	 as	 near	 and	 longer-term	 priorities,	 even	 though	 the	 distinctions	when	 synthesizing	 these	
concepts	 to	 provide	 implemented	 capabilities	will	 not	 be	 as	 cleanly	 decomposable.	 	 A	 high-level	 view	of	 these	
priorities	is	shown	in	Figure	29.	
	
The	guiding	belief	underlying	the	AoA	roadmap	is	that	design	of	complex	systems	for	mission	critical	applications	
requires	 an	 integrated	design	 and	 analysis	 process	 focused	on	 identifying	 the	 set	 of	 alternatives	most	 likely	 to	
meet	requirements	based	on	the	information	(data,	design	architectures,	models,	etc.)	available.		The	concepts	of	
multiple	 architectures,	 operational	 scenarios,	 stakeholder	 perspectives,	 SoS	 views,	 and	 a	 traceable	 tie-in	 to	
requirements	 (that	 promotes	 their	 evaluation	 and	 maturation)	 all	 seek	 to	 address	 the	 complexity	 of	 analysis	
needed	while	recognizing	that	being	all-encompassing	is	not	feasible.		Throughout	the	roadmap,	we	adhere	to	the	
philosophy	that	 the	most	 important	goal	 is	 insight,	not	numerical	 treatment	or	 inference.	 	 In	decision	analyses,	
qualitative	 concepts	 and	 judgments	 are	 often	 required	 to	 be	 translated	 into	 quantitative	 measures	 to	 enable	
scalable,	 consistent,	 and	 traceable	 analyses.	 	 Methods,	 processes,	 and	 tools	 (MPTs)	 should	 be	 engineered	
together	 to	 promote	 transparent,	 intuitive,	 rational,	 and	 quantifiably	 traceable	 foundations	 for	 resiliency	
analyses.		
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Figure	29.	Near	and	longer	term	AoA	Roadmap	priorities		

	
Just	as	there	is	no	one	monolithic	AoA	in	terms	of	nature	and	scope	that	will	address	all	of	the	insights	required	of	
the	DoD’s	Materiel	 Solution	Analysis	process,	 there	 is	no	 single	answer	 for	how	 to	 support	 and	 implement	 the	
process	in	an	executable	environment.		Rather,	implementation	tools	and	techniques	should	evolve	to	support	a	
diverse	 community	 of	 users	with	 diverse	 backgrounds	 and	 needs	 as	well	 as	 a	 diverse	 community	 of	 externally	
hosted	M&S	 components	 that	 may	 be	 needed	 for	 any	 given	 analysis.	 	 In	 this	 way,	 we	 support	 the	 design	 of	
resilient	 systems	 through	 a	 resilient	 implementation	 amenable	 to	 a	 resilient	 analysis	 process.	 	 The	overarching	
goal	is	to	support	DoD	Leadership	in	keeping	with	the	vision	for	ERS	through	more	effective	evaluation,	definition,	
and	 maturation	 of	 systems	 architectures	 and	 requirements	 alongside	 diverse	 stakeholders	 needs	 and	
expectations	 (present	 and	 future)	 in	 a	 computational	 environment.	 	 This	 will	 enable	 operationally	 relevant	
analyses	of	resiliency	that	better	support	the	acquisitions	process	across	a	system’s	lifecycle.		
	

7.2 RELATION	OF	THE	ROADMAP	TO	THE	AOA	MODULE	

	
At	this	point,	the	AoA	Roadmap	begins	to	relate	directly	to	the	AoA	Module	and	its	development.		To	effectively	
support	the	concept	of	computationally	based	AoAs,	we	need	to	do	several	things:	
	

• Design	the	framework	that	executes	and	manages	analyses	to	provide	efficient	and	scalable	frontend	to	
backend	data	retrieval,	data	manipulation,	data	updating,	etc.		

• Define,	at	least	at	a	perhaps	generalized	but	common	level,	what	actions	in	the	course	of	these	analyses	
happen	where	in	the	computational	environment.		
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• Develop	an	understood	 framework	 in	support	of	common	operations	that	will	enable	us	 to	create	 truly	
dynamic,	interactive	analyses	in	line	with	an	analyst’s	needs.			

The	overall	effect	of	these	processes	is	to	not	replace	human	intelligence	by	making	the	decisions	automatically,	
but	rather	to	enhance	or	augment	the	human	analyst’s	intelligence	through	better	implementation	of	information	
technology,	 effectively	 enhancing	 our	 human	abilities	 to	manipulate	 and	understand	 information.	 	 In	 turn,	 this	
controls	our	ability	to	develop	new,	improved	insights.			
	
The	AoA	module	 is	a	direct	 implementation	of	 these	concepts,	 serving	as	an	enhanced	analytical	user	 interface	
that	handles	the	data	retrieval,	manipulation,	and	updating	behind	the	scenes	and	allowing	the	analyst	to	focus	
on	developing	a	better	understanding	to	the	problem.	
	

7.3 THE	AOA	MODULE	

	
The	AoA	module	was	developed	so	it	could	be	integrated	into	both	TradeAnalyzer	for	 large	data	sets	(1M-10M)	
and	 TradeBuilder	 for	 small	 to	medium	 size	 data	 sets	 (1k-10k).	 The	 significant	 difference	 in	 the	 two	 integration	
efforts	was	that	when	integrated	into	the	ERS	TradeBuilder	framework,	the	changes	done	to	requirements	could	
be	persisted	and	explored	using	the	other	views	in	the	framework	(e.g.,	SysML	viewer).	
	

	
Figure	30.	Initial	AoA	Module	screen	(after	tradespace	selection)	

	
The	user	is	required	to	select	a	tradespace	before	the	AoA	module	can	be	initialized.		The	user	is	then	required	to	
specify	an	initial	tool	(or	graphical	widget)	to	include	in	the	dynamic	visualization	environment,	as	depicted	in	
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Figure	30.		If	the	user	selects	the	scatterplot	tool,	he/she	will	then	be	presented	with	a	simple	scatterplot	of	two	
variables	in	the	tradespace,	as	depicted	in	Figure	31,	where	maintenance	cost	is	plotted	against	max	power.	
	
	

	
Figure	31.	Initial	Scatterplot	

	
The	 user	 can	 then	 change	 the	 variables	 visualized	 or	 add	more	 tools.	 	When	 adding	 new	 tools,	 the	 user	must	
specify	where	to	add	it.		When	selecting	a	new	variable,	the	user	must	specify	on	which	tool	to	include	it,	e.g.,	as	
an	axis	on	the	scatterplot	tool.	
	
The	tools	that	can	currently	be	included	in	a	dynamic	dashboard	are:	
	

• Barchart:		Displays	one	variable.	
• Box	and	Whisker	Plot:	Displays	one	variable.	
• Scatterplot:	Displays	three	variables	(x-axis,	y-axis,	and	color)	
• Requirements:	 Allows	 users	 to	 modify	 the	 requirements	 tree	 (can	 add/delete	 requirements,	 modify	

weights	and	utility	functions).	
• Table:	 a	 table	 of	 the	 tradespace	 where	 columns	 are	 variables	 and	 rows	 are	 cases	 (or	 data	 points,	 or	

alternatives).	

The	data	in	the	dashboard	is	dynamically	updated,	allowing	users	to	brush	(i.e.,	select)	data	on	one	view	and	see	
the	impact	on	the	other	views.	
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Caveats	for	the	AoA	tool	is	that	due	to	limitations	in	current	browser	capabilities,	the	number	of	data	points	that	
can	be	displayed	is	generally	limited	to	a	few	thousand,	with	performance	quickly	decreasing	when	the	datasets	
reach	10,000	cases	or	so.	
	

	
Figure	32.	A	more	complex	dashboard	comparing	total	satisfaction	of	requirements,	KPPs,	KSAs	and	cost	

	
In	Figure	32	we	see	a	more	complex	dashboard	that	can	be	generated.	In	this	case	we	are	comparing	a	KPPs	(ferry	
range	and	hover	ceiling),	a	KSA	(max	power),	a	cost	metric	(maintenance	cost),	the	total	aggregate	requirement	
(the	 color,	 yellow	 is	 better,	 blue	 is	worse)	while	 changing	our	preference	 for	 the	purchase	price	of	 the	 system	
(which	 impacts	 the	 total	 satisfaction	 of	 our	 requirements.	 	 This	 tool	 allows	 users	 to	 dynamically	 rearrange	 the	
types	 of	 visuals	 they	want	 to	 display,	 the	 variables	 they	 evaluate,	 and	 their	 requirements	 preferences	 (both	 in	
terms	of	the	utility	functions	and	the	aggregation	functions).	
	

7.4 FUTURE	SYNTHESIS	WITH	TRADESTUDIO	

	
The	ERDC	developed	TradeAnalyzer	includes	the	capability	to	display	much	larger	datasets	than	what	is	possible	
with	the	current	instantiation	of	the	AoA	tool	as	used	in	TradeBuilder.		Conversely,	the	AoA	module	allows	users	
to	interact	with	the	data	and	cast	it	in	multiple	ways	to	try	to	understand	the	tradespace	and	interact	with	it	by	
filtering	 and	 changing	 the	 decision	 makers’	 preferences	 (i.e.,	 requirements).	 The	 two	 tools	 are	 therefore	
synergistic	 and	 there	would	 be	 value	 in	 developing	 a	 tighter	 integration	 between	 the	 two.	 	 Steps	 that	will	 be	
required	to	do	so	include:	(1)	expand	the	data	model	in	TradeAnalyzer	or	connect	it	to	TradeBuilder	database,	(2)	
coordinate	the	HDF5	 format	between	the	two	tools,	(3)	update	the	look	and	feel	of	the	two	to	produce	a	more	
seamless	 experience,	 (4)	 and	 potentially	 allow	 the	 user	 to	 filter	 in	 the	 TradeAnalyzer	 widgets	 and	 update	 the	
views	in	the	AoA	module.	
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8 EASE-TRADEBUILDER MODULE	

	
Other	tools	are	external	to	TradeBuilder	and	may	exist	as	some	synthesis	of	a	server,	a	library	of	various	analytical	
models	 and	 simulations,	 and	 an	 interface	 through	 which	 external	 software	 may	 submit	 inquiries.	 	 Executable	
Architecting	 Systems	 Engineering	 (EASE),	 developed	 by	 the	US	 Army	 Research	 Laboratory,	 is	 one	 such	 toolset.		
EASE	 focuses	 on	 creating	 a	 systems	 engineering	 data-driven	 infrastructure	 to	 facilitate	 interoperability.	 	 EASE	
allows	 System	 of	 Systems	 (SoS)	 design	 encapsulation	 and	 connects	 an	 interview	 system	 that	 allows	 a	 user	 to	
launch	a	distributed	M&S	execution	based	on	functional	and	scenario	choices	relevant	to	the	operational	context.	
Prior	efforts,	to	include	those	under	SERC	RT-120,	developed	an	interface	between	EASE	and	the	ERS	tools.	
	
This	 task	 (under	 RT-145)	was	 concerned	with	 creating	 an	 update	 to	 the	 interface	 to	 EASE	 given	 the	 release	 of	
TradeBuilder	v1.4.1,	perform	some	minor	upgrades	to	the	implementation,	and	support	the	delivery	of	an	initial	
integrated	solution	to	the	Army’s	Edgewood	Chemical	and	Biological	Center	(ECBC).	
	
The	interface	to	EASE	had	to	be	updated	due	to	(1)	changes	by	the	EASE	development	team,	(2)	the	upgrades	to	
OpenMDAO	 v1.0	 (which	 serves	 as	 TradeBuilder’s	 primary	 execution	 engine),	 and	 (3)	 an	 improvement	 to	 the	
security	 of	 the	 protocol	 used	 for	 communicating	 with	 EASE.	 	 The	 updates	 required	 were	 not	 as	 extensive	 as	
originally	planned	so	the	majority	of	 the	resources	associated	with	this	 task	were	used	to	support	other	efforts	
who	 had	 grown	 in	 scope.	 	 A	 demonstration	 Jupyter	 notebook	was	 developed	 to	 illustrate	 the	more	 advanced	
functionality	for	integrating	with	EASE	through	its	API.	
	
During	a	two-day	trip	to	Edgewood,	MD,	the	GTRI	team	supported	the	installation	of	the	framework	in	the	ECBC	
servers,	introduced	the	ECBC	attendees	to	the	tool,	and	demonstrated	the	interface	to	EASE.	In	conjunction	with	
the	 present	 EASE	 team	 members,	 the	 GTRI	 team	 developed	 sample	 problems	 on	 the	 fly	 and	 showed	 the	
attendees	how	a	OneSAF	 scenario	 exposed	by	 EASE	 could	be	 integrated	 into	 the	 ERS	 TradeBuilder	 framework,	
executed	some	scenarios,	and	demonstrated	how	the	data	generate	could	then	be	analyzed	in	the	framework.	
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9 TRADESPACE	SUPPORT	TO	ERS	DEMO	

	
The	ERS	Demo	task	primarily	supported	the	development	of	example	models	to	illustrate	how	the	framework	can	
support	representative	projects.	 	 In	addition,	the	funding	was	also	used	to	provide	assistance	to	the	ERDC	team	
exploring	 integration	 with	 various	 analysis	 tools,	 the	 most	 significant	 one	 being	 NASA’s	 OpenVSP,	 as	 well	 as	
supporting	the	deployment	of	the	tool	to	other	entities	(e.g.,	Naval	Postgraduate	School).	
	

9.1 DEMO	MODELS	

The	demonstration	models	task	evolved	to	become	an	opportunity	to	highlight	how	the	framework	could	be	used	
to	 support	 representative	 applications.	 	 Three	models	 were	 developed	 during	 this	 effort,	 (1)	 a	 fighter	 aircraft	
sizing	model,	(2)	a	rotorcraft	conceptual	design	models,	and	(3)	a	ground	vehicle	performance	analysis	model.		
	
	
9.1.1 FIGHTER	AIRCRAFT	SIZING	MODEL	

The	fighter	aircraft	model	was	developed	to	illustrate	how	a	simple	aircraft	sizing	and	synthesis	routine	could	be	
integrated	into	the	framework.	 	Rather	than	integrating	a	complex	tool	(e.g.,	NASA’s	FLOPS),	the	team	opted	to	
implement	 a	 simpler	 routine	 that	 leverages	 open	 literature	 approaches	 to	 aircraft	 sizing	 and	 synthesis.	 	 Three	
primary	sources	provided	the	mathematical	foundation	for	the	model,	namely:	(Mattingly,	1987),	(Raymer,	1999),	
and	(Roskam,	2006).	This	model	notionally	sizes	and	costs	aircraft	based	on	the	required	missions	the	aircraft	 is	
expected	 to	 perform.	 	 The	 initial	 version	 of	 the	model	 was	 demonstrated	 and	 delivered	 to	 ERDC,	 but	 shifting	
priorities	led	the	team	to	stop	development	on	the	model	and	instead	focus	on	new	features	for	the	framework.	
		
	
9.1.2 ROTORCRAFT	CONCEPTUAL	DESIGN	MODEL	

A	series	of	rotorcraft	models	were	developed	under	this	task	to	exemplify	how	a	project	may	evolve	from	high-
level	 requirements	 to	 tradespace	 analysis.	 Physics-based	 models	 were	 generated	 to	 size	 a	 single	 main	 rotor	
helicopter	and	to	analyze	its	performance,	and	a	simple	cost	model	was	also	created.	A	Jupyter	notebook	is	used	
to	generate	all	rotorcraft	artifacts	and	serves	as	an	example	of	how	a	team	may	codify	this	process	in	a	repeatable	
environment.	In	the	notebook,	a	new	project	was	created	with	a	hierarchy	of	requirements.	A	Work	Breakdown	
Structure	 (WBS)	 was	 created	 in	 accordance	with	MIL-STD-881C,	 representing	 the	 single	main	 rotor	 helicopter.	
When	run,	the	resulting	WBS	is	generated	in	SysML	in	the	frontend	as	well,	as	shown	in	Figure	33.	Attributes	are	
assigned	to	the	WBS	and	the	models	are	added	to	create	a	tradespace.	Both	a	direct	execution	and	asynchronous	
workers	are	used	to	demonstrate	how	to	execute	the	models,	creating	a	tradespace.	
	
The	team	was	also	able	 to	acquire	a	copy	of	NASA	Design	and	Analysis	of	Rotorcraft	 (NDARC),	a	more	complex	
rotorcraft	 sizing	 and	 synthesis	 tool.	 A	 wrapper	 for	 a	 tandem	 helicopter	 was	 used	 to	 demonstrate	 how	 such	 a	
model	could	be	executed	by	OpenMDAO	and	by	the	tool	itself.	
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Figure	33:	Rotorcraft	Model	Screenshot	

9.1.3 GROUND	VEHICLE	MODEL	

A	notional	model	for	a	Joint	Light	Tactical	Vehicle	(JLTV)	was	developed	to	help	illustrate	the	applicability	of	the	
framework	 to	 systems	 other	 than	 aircraft.	 	 The	 JLTV	model	was	 formulated	 as	 a	 performance	 analysis	model,	
where	values	are	given	for	the	environment	and	the	design	variables,	and	the	model	calculates	the	performance	
of	the	vehicle	(e.g.,	acceleration,	turn	radius).		This	exemplifies	a	different	problem	than	the	rotorcraft	and	aircraft	
model	that	focus	on	sizing	and	synthesis	of	a	vehicle	to	achieve	a	mission	or	series	of	missions.	
	

9.2 OPENVSP	

	
This	task	included	providing	support	to	ERDC	in	using	OpenVSP	by	helping	them	compile	the	tool,	as	well	as	the	
python	interface.		Used	the	SWIG	python	interface	provided	with	OpenVSP	to	build	a	higher-level	interface	that	is	
easier	 to	 employ.	 	 Using	 this	 higher-level	 interface,	 it	 was	 possible	 to	 execute	 OpenVSP	 from	 the	 Jupyter	
notebook.	The	team	experimented	with	developing	a	visualizer	in	the	browser	for	STL	files	which	can	be	created	
by	OpenVSP,	as	given	in	Figure	34	for	simplified,	notional	low	cost	aircraft.		Using	this	method	it	was	possible	to	
modify	the	model	using	the	API,	have	OpenVSP	generate	an	STL	file,	and	then	visualize	the	model	in	3D	inside	the	
Jupyter	notebook.	The	team	also	provided	some	limited	support	to	the	ERDC	team	in	 integrating	OpenVSP	with	
the	 Navy’s	 Multidisciplinary	 Analysis	 Optimization	 Integrated	 Environment	 (MAOIE),	 as	 well	 as	 some	 subject	
matter	expertise	in	the	use	of	the	tool.	
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Figure	34.	Simple	Interactive	Model	of	Notional	Low	Cost	Aircraft	
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10 RECOMMENDATIONS	AND	NEXT	STEPS	

	
The	focus	 for	early-stage	design	 is	not	 identifying	an	optimal	solution,	but	rather	narrowing	down	the	potential	
solution	 space	 for	more	 rigorous	 data	 collection,	 generation,	 and	 evaluation.	 	 In	 decision	 analyses,	 qualitative	
concepts	 and	 judgments	 are	 often	 required	 to	 be	 translated	 into	 quantitative	 measures	 to	 enable	 scalable,	
consistent,	and	traceable	analyses.		Throughout	this	effort,	we	adhere	to	the	philosophy	that	the	most	important	
goal	is	insight,	not	numerical	treatment	or	inference.	
	
Recommendations	for	the	next	stage	of	maturation	for	the	analytical	methods	are	as	follows:	

• Work	in	tandem	with	the	software	engineering	effort	to	more	formally	define	a	multi-objective	decision	
analysis	workflow,	albeit	an	expanded	method	that	 includes	classical	steps	as	well	as	some	of	the	more	
nuanced	approaches	such	as	those	described	in	this	work.		This	should	be	graphically	driven	and	easy	for	
MODA	practitioners	to	follow	so	that	we	may	develop	broader	community	use	and	insights	that	 lead	to	
best	practices	across	these	methods.	

• Use	 decision	 theory,	 and	 explicitly	 the	 decision	 space,	 as	 a	 springboard	 and	 guidepost	 for	 further	
analytical	 explorations	 that	will	 inform	 the	decision	process.	 	 This	 includes	maturing	methods	 to	better	
sample	and	generate	Pareto-relevant	data	as	discussed	in	Section	2.3.	

• Harmonize	and	mature	methods	to	robustly	identify	drivers	in	the	sPF	that	are	equally	informative	across	
parameters	that	may	be	highly	correlated	and	not	independent.		More	effectively	identifying	drivers	will	
be	one	of	the	most	important	ways	to	add	insight	to	the	decision	making	process.		For	example,	how	does	
changing	the	preference	structure	either	entirely	or	simply	by	changing	thresholds	and	objectives	change	
the	identification	of	“best”	alternatives,	and	how	does	that	change	the	cost	drivers?	

• Mature	the	way	we	bring	different	sensitivity	analysis	methods	into	the	workflow	and	problem	space	so	
that	we	can	evaluate	a	wider	range	of	problems	for	“How	sensitive	is	P	with	respect	to	Q?”.		For	example,	
we	need	to	know	how	sensitive	our	valued	parameters	(defining	a	Needs	Context)	are	to	(a)	environment	
variation	or	 (b)	 operational	 use	 characteristic	 variation.	 	 Conversely,	we	may	need	 to	 ask	which	design	
alternatives	 in	our	soft	Pareto	set	are	 least	sensitive	(in	terms	valued	parameter	 levels	or	multi-additive	
value)	to	these	dimensions.	

Recommendations	for	the	software	development	(to	include	TradeBuilder,	and	any	other	component	of	the	ERS	
TradeStudio	suite):	

• More	streamlined	 integration	of	 the	ERS	TradeBuilder	 toolset	with	ERDC’s	broader	TradeStudio	suite	of	
tools;	this	includes	investigation	of	options	for	back	end	refactoring	and/or	front	end	“look	and	feel”	

• Defining	opportunities	for	enhanced	software	stability	
• Enabling	 server	 deployment	 of	 the	 software	 on	 ERDC	 assets	 (to	 include	 ERDC’s	 Common	 Computing	

Environment)	
• User	interface	enhancements;	this	may	include	features	such	as	AoA	“stop	light”	charts,	prediction	and/or	

contour	profilers	of	attributes,	and	others	as	prioritized	by	ERDC	
• Development	of	an	initial	software	user’s	manual	
• Identification	 of	 operational	 simulations	 of	 interest	 to	 specific	 ERS	 applications	 (e.g.	 AFSIM	 for	 aircraft	

concepts,	OneSAF	for	ground	vehicles,	etc.);	extend	this	to	include	development	of	and/or	enhancements	
to	existing	Application	Protocol	Interfaces	(API)	between	the	ERS	tools	and	those	operational	simulations.	 	
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