
Report No. Year 1 Technical Report                                                                             Date 09/06/18 

 
 

 

Next Generation Adaptive Cyber Physical Human Systems 

Year 1 Technical Report 

September 6, 2018 

 
Principal Investigator:  Dr. Azad M. Madni, USC 

Co-Investigator:  Dr. Dan Erwin, USC 

 

Research Team: 

Dr. Ayesha Madni, USC 

Edwin Ordoukhanian, USC 

Parisa Pouya, USC 

 

Sponsor: DASD(SE) 
 



Report No. Year 1 Technical Report                                                                           September 6, 2018 

ii 

Copyright © 2018 Stevens Institute of Technology, Systems Engineering Research Center 
 
The Systems Engineering Research Center (SERC) is a federally funded University Affiliated Research 
Center managed by Stevens Institute of Technology. 
   
This material is based upon work supported, in whole or in part, by the U.S. Department of Defense 
through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under 
Contract HQ0034-13-D-0004.   
  
Any views, opinions, findings and conclusions or recommendations expressed in this material are those of 
the author(s) and do not necessarily reflect the views of the United States Department of Defense nor 
ASD(R&E). 
  
No Warranty. 
 
This Stevens Institute of Technology and Systems Engineering Research Center Material is furnished on 
an “as-is” basis.  Stevens Institute of Technology makes no warranties of any kind, either expressed or 
implied, as to any matter including, but not limited to, warranty of fitness for purpose or merchantability, 
exclusivity, or results obtained from use of the material.  Stevens Institute of Technology does not make 
any warranty of any kind with respect to freedom from patent, trademark, or copyright infringement. 
  
This material has been approved for public release and unlimited distribution. 

 
  



Report No. Year 1 Technical Report                                                                           September 6, 2018 

iii 

TABLE OF CONTENTS 

Table of Contents ................................................................................................................. iii 

List of Figures ....................................................................................................................... iv 

List of (Tables, Sequences) .................................................................................................... iv 

Abstract ................................................................................................................................ 1 

Introduction .......................................................................................................................... 2 

Technical Challenges ............................................................................................................. 3 

Typology of Adaptive CPHS .................................................................................................... 3 
Human and CPS Roles in Adaptive CPHS .............................................................................................. 4 

Challenges in Adaptive CPHS Design ...................................................................................... 6 

Learning and Adaptation in CPHS ........................................................................................... 8 

Functional Architecture of Adaptive CPHS .............................................................................. 9 

Key Elements of Technical Approach .................................................................................... 10 
Adaptive CPHS Ontology Elements: Initial Set ................................................................................... 10 
Shared Governance and Task Execution ............................................................................................ 11 
Human Intent Identification: Possible Methods ................................................................................ 11 
Human Behavior Modeling ................................................................................................................ 11 
Machine Learning: Opportunities ...................................................................................................... 12 

ILLUSTRATIVE EXAMPLE AND PROTOTYPE CPHS: Perimeter Security of C-130 Aircraft .......... 13 
Multi-Asset Control Approach ............................................................................................................ 14 
Human Roles and CPH Functions ....................................................................................................... 18 
Sample UI and User System Interaction ............................................................................................. 18 
Leverage of RT-166 Building blocks .................................................................................................... 19 

Summary and Conclusion .................................................................................................... 20 

References .......................................................................................................................... 21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Report No. Year 1 Technical Report                                                                           September 6, 2018 

iv 

LIST OF FIGURES 

Figure 1. Functional Architecture of Adaptive CPH System.......................................................... 10 

Figure 2. C-130 Aircraft Security  .................................................................................................. 13 

Figure 3. Scenario Simulator ......................................................................................................... 14 

Figure 4. Dashboard Showing Coverage Area............................................................................... 16 

Figure 5. Dashboard with one Quadcopter During Optimization of Fitness Function ................. 16 

Figure 6. Optimal Location for a Single Quadcopter .................................................................... 17 

Figure 7. Optimal Locations for Three Quadcopters .................................................................... 17 

Figure 8. Monitoring System ......................................................................................................... 19 

 

LIST OF (TABLES, SEQUENCES) 

Table 1. Human Roles in CPH Systems and Associated Context..................................................... 4 

Table 2. CPS Roles in CPHS and Associated Context ....................................................................... 5 

Table 3. Examples of Learning in Adaptive CPHS............................................................................ 8 

Table 4. Adaptation in Adaptive CPHS (Madni, 2017) .................................................................... 9 

Table 5. Machine Learning Techniques ........................................................................................ 12 

 

 

 



 

Report No. SERC-2018-TR-112                                                                           September 6, 2018 

1 

ABSTRACT 

Cyber-Physical-Human Systems (CPHS) are purposeful arrangements of sensors, computers, 
communication devices, and humans to perform tasks that achieve specific mission objectives. 
These systems typically allow other systems, devices, and data streams to connect/disconnect as 
needed during mission execution. The roles of humans in CPH systems are quite varied. In 
adaptive CPHS, humans collaborate with the cyber-physical elements to jointly accomplish tasks 
and adapt to changing contexts to accomplish mission goals. This report presents the key 
accomplishments of the first year of this effort. 
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INTRODUCTION 

Cyber-Physical-Human Systems (CPHS)  are complex engineered sociotechnical systems in which 
computers, sensing and communication devices, and humans cooperate to jointly perform 
missions (and tasks) over time and across space (Sowe et al., 2016). CPHS can exist at multiple 
scales. A purposeful combination of computational algorithms, physical components, and 
humans (agents), adaptive CPHS are capable of collaborating in joint task performance and 
adapting as needed to respond to operational contingencies and unexpected situations (Madni, 
2018). Their performance depends on shared context and mutual predictability especially in the 
face of disruptions (Madni, 2017).   
 
Madni (2018) defines CPHS as “a class of safety-critical socio-technical systems in which the 
interactions between the physical system and cyber elements that control its operation are 
influenced by human agent(s). CPHS objectives are achieved through interactions between: 
physical system (or process) to be controlled; cyber elements (i.e., communication links and 
software); and human agents who monitor and influence the operation of cyber-physical 
elements. A key distinguishing feature of CPHS is that human (agents) intervene to redirect cyber-
physical system or supply needed information, not just assume full control or exercise manual 
over-ride.” 
 
 An important challenge in the design of CPHS is assuring shared context in human-CPS decision 
making and control. This is a challenging problem because of the nonlinear   behavior of CPHS in 
different contexts. Existing system modeling approaches tend to employ simplistic human 
models (e.g., humans modeled as a disturbance to the system, human modeled as a simple 
transfer function) that do not take human cognitive limitations into account. However, current 
research at major universities is beginning to look at the development of frameworks for CPHS 
modeling, analysis, and verification in simulated operational environments (Madni, Madni and 
Sievers, 2018). For example, researchers at The Robotic Institute of CMU are conducting research 
in integrated human-CPS behavior with a view to developing fundamental principles and 
algorithms that can serve as a foundation for provably safe, robust hybrid control systems for 
CPHS. This group is also working on developing analytical human models that reflect cognitive 
abilities and limitations  in interactive human control of CPS elements. Similarly, researchers at 
UC Berkeley are working on predictive methods on guaranteeing performance of CPHS (Robinson 
et al., 2016). 
 
Adaptive CPHS are CPHS with the ability to: a) flexibly respond to unexpected or novel situations 
during mission execution; b) respond to new missions and objectives through plan adjustment, 
plan adaptation, replanning, or setting new goals; c) learn from experience (i.e., observations, 
feedback on outcomes) using different types of machine learning (i.e., supervised, unsupervised, 
and reinforcement learning); and d) incorporate humans in the role of passive sensors (e.g., social 
networks) and/or active performers (Madni, 2018). 
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Research in adaptive CPHS, is also being pursued within the U.S. Military, emergency and 
intensive care units, first responder systems, and smart manufacturing (Gelenbe et al., 2012).  
Adaptive CPHS are viewed as critical for high stress, emergency response operations (e.g., 
firefighting, terrorist response, intensive care, natural disaster response). In such high stress 
scenarios, effective collaboration between the cyber-physical elements and humans is critical to 
achieve desired outcomes (e.g., lives saved, damage prevented). Examples of adaptive CPHS are 
smart grids, smart cities, self-driving vehicle networks, smart buildings, and other instrumented, 
sociotechnical infrastructures that require resilience. 
 

TECHNICAL CHALLENGES 

There are multiple challenges in architecting and engineering adaptive CPHS:  
 
Inferring Human Intent. Understanding intent is an ongoing challenge in adaptive CPHS. Electro-
physiological sensors (EPS) are a key source for identifying intent but tend to be noisy. In fact, 
noise is inherent in any sensor-based control system. Noise filtering and sensor fusion only 
partially reduce uncertainty in inferring intent. Therefore, it is important to exploit contextual 
knowledge to increase confidence in intent determination.  
 
Shared Contextual Knowledge. It is important to ensure human and CP elements have a common 
understanding of concepts and relationships in problem domain (i.e., shared domain ontology 
such as METT-TC). Human and CP elements need to have a shared understanding of goals, plans 
and system state. Under a defined set of conditions, CPHS are required to behave in a manner 
that complies with boundary constraints and threshold limits. Unexpected behaviors (for any 
reason) need to be recognized and appropriate actions taken that either result in continued safe 
operation, or cause CPHS to transition to safe operation. A key hypothesis is that with proper 
consideration of operational modes and states, CPHS can be made robust, and can withstand 
errors induced by environmental uncertainty or misinterpretation of human intent.  
 
Strong Time Semantics. Need for strong time semantics is required to ensure proper 
synchronization and sequencing of CPHS operation.  A CPHS has to synchronize sensing, decision 
making and responses so that the right actions are taken at the right time to accomplish desired 
behaviors. An action taken to soon or too late can potentially prevent achievement of desired 
outcomes, and possibly cause an unsafe condition. 
 

TYPOLOGY OF ADAPTIVE CPHS 

Adaptive CPHS can be conveniently classified as: systems in which humans directly control the 
CPS; systems in which the CPS passively monitors the human and takes appropriate actions when 
needed; and systems that are a combination of the two. Examples of such applications are 
presented in the literature (Madni et al., 1985; Munir et al., 2014). 
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HUMAN AND CPS ROLES IN ADAPTIVE CPH SYSTEMS 

Human Control of the CPS. This type of adaptive CPH system calls for direct control of the CPS 
by humans, using primarily supervisory control (Sheridan, 1992). There are two cases that exist 
for this type. In the first case, the human is able to intervene in the CPS control algorithms to 
adjust set points. In the second case, the CPS accepts and carries out human commands, reports 
results, and awaits the next command from the human. In both cases, the human is in control of 
the CPS. 

CPS Passively Monitors the Human and takes Appropriate Action when Needed. The CPS 
elements for this type of CPH system can be open-loop or closed-loop. An example of an open-
loop CPH system is a sleep tracking device that tracks the quality of sleep (Kay et al., 2012). CPS 
elements in this case also monitor sound, light, temperature, and motion sensors to record 
environmental conditions (i.e., context) during sleep. In this example, the human is in the loop 
but does not directly control the system. Also, the CPS does not take any proactive action to 
improve sleep quality (i.e., it is an open-loop system). An example of a closed-loop human-in-the-
loop CPS is the smart thermostat. A smart thermostat uses sensors to detect occupants in the 
home as well as their sleep patterns and uses the patterns to proactively turn off the HVAC 
system to reduce energy consumption (Lu et al., 2010). 

Human Monitoring the CPS that Acts as the Controller. In this type of adaptive CPH system, 
control to the CPS is granted by the human (by passing the “conn”). The human can revoke 
control from the CPS by taking back the “conn.” The concept of passing and revoking the “conn” 
is a naval metaphor involving the Captain and the Officer of the Deck (OOD). In this control 
construct, the Captain commands and controls actuators through the OOD, or grants control to 
the OOD to control the actuation subsystems while maintaining the ability to rescind the “conn.” 
In either case, the Captain works through the OOD. In one case, the OOD is the Controller (i.e., 
OOD has the “conn”). In the other case, the Captain has the “conn” and the OOD accepts the 
captain’s command and translates them into controls for the actuation subsystems (Madni et al., 
1985). 
 

Human and CPS Roles in Adaptive CPHS. Human and machine strengths and limitations have 
been extensively addressed in the literature (Madni, 2010; Madni, 2011). In the light of this 
research, several adaptive CPHS-related questions need to be answered: 1) What roles do 
humans play in adaptive CPHS? 2) In what contexts do these roles come into play? 3) What is the 
impact of disruptions on these roles? How to architect CPHS to support the different human and 

CPS roles (Tables 1 and 2). 

Table 1. Human Roles in CPHS and Associated Context 

 Monitor: outside the control loop 

− monitor and interact with the environment (exclusive human awareness) 

− assess correct operation of CPS 

− intervene in the control loop if necessary 

(context: CPS requests take over; incorrect/ineffective CPS operation) 
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 Supervisor: outside the control loop 

− approve CPS decision 

− over-ride CPS decision (after taking back the “conn”) 

(context: CPS unaware of full operational context) 

− re-allocate tasks between human and CPS 

(context: erroneous CPS decision; cognitive overload/fatigue; CPS request) 

 Controller: within the control loop 

− interact with sensors and actuators 

(context: supply information needed for control; dynamic operational environment; 
partial observability) 

− e.g., query sensors, (re)direct sensors/collection assets; supply missing information 

− e.g., modify actuator inputs based on information not available to the controller 

 Backup CPS: within the control loop 

− takeover CPS control function  

(context: when CPS malfunctions, or CPS requests human takeover) 

 

The CPS can also perform in a number of roles as shown in Table 2. 

Table 2. CPS Roles in CPHS and Associated Context 

 Controller 

− interrogate/redirect sensors 

− modify actuator inputs based on externally sensed data 

− signal handoff if CPH system headed into trouble 

 Correlator/Aggregator 

− correlate its assessment of human state with external sensors 

− e.g., is elevated heart rate due to stress or excess caffeine? 

− collects and fuses multi-source information with proper weighting based on source 
reliability 

 Shared Decision Maker 

− confirm/probe human-defined objective and retrieve known options 

− evaluate all options (including options generated by humans;) implement human 
selected option 

 Backup to Human  

− be prepared to backup human by taking over specific functions/tasks under certain 
situations 

− e.g., inactivity period > threshold; human request; human drowsy (physiological 
monitoring) 

 
Tasks performed by human or CP elements can be re-allocated based on context (inability to 
perform, request for help). Need ways to assess human-CPS interactions so that right (safe, 
correct, efficient) task allocation is achieved. Scope of tasks can change (performance, context). 
e.g., if human drowsy, CPS takes over, e.g., if CPS headed into trouble or signals handoff, human 
takes over.  
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CHALLENGES IN ADAPTIVE CPHS DESIGN 

Existing system design methodologies and tools are inadequate for modeling and designing CPHS. 
CPHS are tightly coupled systems with strict timing and synchronization constraints. Existing tools 
lack requisite semantics and “improvement with use” capability. The specific deficiencies of 
existing tools are that they address cyber, physical, and human elements in isolation, not 
together. They lack the semantics of time and focus exclusively on subsystems, not their 
interactions and synchronization constraints. They tend to have implied or overly simplistic 
representation of human behavior. Invariably, they tend to be “build-time” approaches with no 
provision for learning during mission execution (“run-time”). 

 

As noted earlier, adaptive CPHS are sociotechnical systems that comprise computation, 
communication and control at multiple scales. With CPHS, the role of the human is multi-faceted 
(Madni, 2010; Madni, 2011), ranging from that of a supervisor (who can intervene in the control 
loop) to that of an agent (operating within the control loop). An adaptive CPHS needs to create 
and capitalize on the synergy between the human and CPS elements. To this end, several 
challenges that need to be overcome (Madni, 2010; Madni, 2011). These include: 

 

• Performance Degradation: performance degradation occurs with sustained high cognitive 
load and/or fatigue 

• Unpredictability: unpredictability arises from human variability in task performance   
• Human Reluctance: humans need to be incentivized to perform as an effective team 

member  
• Misperception of Humans: humans tend to be perceived as suboptimal job performances 

that need to be compensated for/shored up rather than as assets capable of creativity 
and ingenuity  

• Limitations of Humans and CPS: dynamic function allocation can be used to circumvent 
limitations of both humans and CPS  

• Accuracy and Recall: tasks that require perfect recall and computational accuracy need to 
be allocated to CPS  

• Search and Aggregation: tasks that require rapid search and aggregation capabilities need 
to be allocated to CPS 

• Common Sense Reasoning and Novel Option Generation: tasks that require common 
sense reasoning and novel option generation need to be allocated to humans 

• Repetitive Tasks: repetitive tasks need to be allocated to CPS (CPS does not tire; can be 
augmented by additional CPS elements if overloaded) 

• Human Behavior Modeling: aspects of human behavior that should be included in human 
behavior models (e.g., task demands, context; progress for cognitive limitations) are 
determined by model purpose and context  

• Bi-Directional Learning: bi-directional learning is needed for mutual adaptation and 
effective joint performance (e.g., machine learns human preferences and intent offline; 
human learns machine limitations and capabilities offline; each learns the other’s state 
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online) (e.g., human cognitive load, fatigue level, CPS availability to take over certain 
human tasks) 

• Shared Decision Making: allocating decision tasks to CPS and humans to exploit their 
respective strengths while circumventing their respective limitations (Madni, 2014) 

• Context Recognition: CPS needs to recognize context and determine how well (i.e., to 
what degree, how fast) humans can adapt in that particular context before initiating some 
type of adaptation 

• Role Switching: CPS need to keep track of multiple human roles and human role switches 
during task performance 

 
There are several opportunities that exist to enhance the performance of adaptive CPHS during 
mission execution. These include: exploring the human’s ability to improvise in unfamiliar 
problem contexts and situations; leveraging the CPHS’s ability to dynamically transfer control 
between the CPS and human and vice versa based on context; allowing the human to back up a 
malfunctioning CPS in specific contingency situations; ensuring that the human and CPS are 
capable of exploiting each other’s strengths during interactive task performance while 
circumventing each other’s limitations; and facilitating mutual learning during task performance. 
One CPS limitation is that it may not be aware of the human’s awareness of the environment 
based on certain factors that the human discerns (i.e., exclusive human awareness). For example, 
in automated vehicles, the driver may perceive something that bears on decision making that the 
vehicle’s autonomous controller might not. Similarly, changes to a goal or tasking that the human 
becomes aware of (e.g., radio message to the human) that requires the human to change goals 
or performance parameters. In this case, the CPS is not aware of this change unless the human 
communicates this to the CPS to re-establish shared context. Thus, when human interaction with 
the environment results in knowledge that the CPS is unaware of, then the human has a choice: 
either communicate that knowledge to the CPS so the CPS is a candidate to perform tasks that 
require that knowledge or make tasks requiring that knowledge exclusively human performed 
tasks. 

 

A key challenge outside the scope of this effort is the vulnerability of the adaptive CPHS to cyber-
attacks. As the interactions between the physical, cyber and human elements increases, the 
physical system becomes increasingly more susceptible to security vulnerabilities in the cyber 
system. Security of cyber-physical systems is a relatively nascent area. Traditional secure 
communication solutions are not designed for secure interoperation among heterogeneous 
applications which is what a CPHS is. Ensuring that a system is still secure while interacting with 
another system is an important issue in CPHS. Wang et al., (2010) suggest abstracting and 
modeling the workflow of a CPS and by extension the CPHS. A general workflow in CPHS 
comprises monitoring of physical processes and environment, networking including data 
aggregation and diffusion, computing which encompasses reasoning and analyzing the data 
collected during monitoring to determine whether the physical process satisfies certain pre-
defined criteria, and actuation which executes the actions during the computing phase. Security 
objectives for CPHS include confidentiality, data and resource integrity, availability to ensure 
correct operation, and authentication of data, transactions, communications and people. Cyber-
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attacks typically occur during interactions between the physical process, networking, computing 
and actuation. The types of attack include eavesdropping, compromised-key attacks, man-in-the-
middle attack, and denial-of-service attack. The cyber attackers include skilled hackers, 
disgruntled insiders, criminal elements, and nation-state terrorist groups (Wang et al, 2010). 
These researchers proposed a context-aware security framework that spans sensor security, 
cybersecurity, and control security. The latter comprises actuation security and feedback 
security. This framework provides a useful perspective to introduce measures in the CPHS to 
thwart cyber-attacks. 

 

LEARNING, ADAPTATION AND TEAMING IN CPHS 

Learning. Learning in CPHS can be for different purposes: learn about the operational 

environment; learn about the humans (e.g., intent, preference, where they can be trusted, where 

not), and learn about the cyber-physical system (e.g., availability, where it needs help), and learn 
how to mutually adapt. Learning in CPHS can exploit multiple sensor sources, can take a variety 
of forms, and satisfy different needs. The human and CPS can learn from each other, from the 
sensed operational environment, and from actions taken in that operational environment. 
Complicating factors are noisy sensors, partial observability, and disruptive events. Both offline 
and online learning play an important role in adaptive CPH systems. Offline learning is based on 
supervised learning. It is used to learn human information seeking policies, preferences and 
priorities (Madni et al., 1982). Online learning approaches include unsupervised learning and 
reinforcement learning. With supervised learning, the system learns general patterns from inputs 
and expected outputs given to the system by a “teacher.” With unsupervised learning, the system 

learns patterns on its own without the aid of a “teacher.” With reinforcement learning, the 
system takes actions for achieving a goal within its environment without the teacher telling it 
how close it is to that goal. Table 3 presents examples of learning in CPH systems. 

Table 3. Examples of Learning in Adaptive CPH Systems 

 CPS learns human information preference (offline) 

− supervised learning 

 CPS infers human intent (online) 

− from noisy signals and context 

 CPS learns human cognitive state 

− from physiological measures and contextual awareness 

− from correlating task performance with physiological 
measures 

 
Adaptation. Adaptation occurs within adaptive CPHS for several reasons: to reduce human 
cognitive load, back up malfunctioning CPS, and respond to disruptions. There are different types 
of adaptation including: task re-allocation from humans to machines; task re-allocation from 
machines to humans; machine adapts to human priorities and preferences with changing 
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context; and human adapts to machine limitations in specific contexts (Madni, 2017). Table 4 
presents examples of adaptations, the triggering criteria, and the desired outcomes. 

 
Table 4. Adaptation in Adaptive CPH Systems (Madni, 2017) 

Adaptation Type Triggering Criteria Desired Outcome 

Re-allocation of Task(s) 
from Human to Machine 

human cognitive load exceeds 
threshold; fatigue; human error 
rate exceed threshold 

manageable human cognitive load 

Re-allocation of Task(s) 
from Machine to Human 

novel situation unrecognizable by 
CPS; CPS request; CPS malfunction 

superior handling of novel 
situations/ contingencies 

Machine Adapts to 
Human 

human preference structure and 
information seeking policy 

increased S/N ratio information 
delivered to human especially 
under time-stress 

Human Adapts to 
Machine 

machine request to transfer 
control; change of context requires 
transfer of control 

superior ability to deal with 
operational tasks and situation 

 

Mutual adaptiveness is a key characteristic of high performance CPHS (Madni, 2017). Mutual 
adaptiveness is subject to human and CPS constraints and is facilitated by shared context 
awareness (Madni, 2017).   

Teaming. A useful way to view the human and CPS in an adaptive CPHS is within a team construct, 
and then define teamwork for adaptive CPHS. Teamwork is the key to sustaining high 
performance especially in the face of disruptions. It is often said that, “A team of experts does 

not make an expert team.” The challenge is to realize effective teamwork between the human 
and CP elements with full cognizance of human cognitive limitations and adaptation constraints 
and CPS implementation constraints.   

 

FUNCTIONAL ARCHITECTURE OF ADAPTIVE CPHS 

Figure 1 presents the functional architecture of an adaptive CPHS.  As shown in the figure, the 
human-CPS interface is role-sensitive, context-aware, and user-adaptive (i.e., it presents 
information in accord with user preferences and priorities learned in offline supervised learning 
environment). The controller is adaptive and sensitive to human inputs and dynamic context 
changes. The human is in the role of supervisor/monitor or supervisor/controller depending on 
whether the human has the “conn” or the CPS has the “conn.” The controller can pass the “conn” 
to the human voluntarily or based on human direction, dynamic function and task allocation 
based on pre-defined criteria and thresholds, as well as criteria for human backing up (i.e., taking 
over for) the CPS, and vice versa. The adaptive controller has facilities for multi-sensor correlation 
to disambiguate causes of variations in human behavior. It can re-task humans and cyber-physical 
elements, re-direct sensors, and modify control inputs to actuators based on external 
intelligence. Online machine learning, informed by user actions, sensor data, and actuator 
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actions, can potentially enhance mutual adaptiveness between the human and cyber-physical 
elements. 
 

 
Figure 1. Functional Architecture of Adaptive CPHS 

 
In adaptive CPHS, success criteria/metrics are associated with the range, rate and completeness 
of adaptation of the cyber-physical and human elements. Other key metrics, that are difficult to 
directly measure, but have “proxies” include shared contextual awareness, predictability, and 
trust. 
 

KEY ELEMENTS OF TECHNICAL APPROACH 

This section describes key elements of our technical approach. Shared Ontology is necessary to 
facilitate interoperation between human and CP Elements. Shared Governance during 
Collaborative Task Execution is required to ensure acceptable behavior of CPS. Human Intent 
Identification from EPS and Context intend to help CP elements to interpret human intention. 
Human Behavior Modeling is required to introduce human constraints and capabilities and 
facilitate CPHS Integration. Machine Learning is required to continuously improve adaptive 
behavior. These elements are discussed in more details next. 

ADAPTIVE CPHS ONTOLOGY ELEMENTS: INITIAL SET 

Below is the initial set of ontology elements with a brief description of each element.  

• Human – person who will work with CP elements 
• Role – container for person with requisite qualifications 

HUMAN –CPS INTERFACE

DYNAMIC CONTEXT 
MANAGER

ADAPTIVE CONTROLLER

ACTUATORS

HUMAN

SENSORS MACHINE LEARNING 
LIBRARY

ONLINE 
MACHINE LEARNING

ENVIRONMENT

• role sensitive
• user-adaptive
• context-aware

• context aware
• dynamic passing of “con”
• dynamic function allocation
• mutual adaptation and backup
• multi-sensor correlation

• sensor status
• actuator status
• control state

• observability
• hostile actors/threats
• own disposition
• time-available

context

tasking/ 
redirection

control input
(modification)

SMART 
USER INTERFACE:

USERS:

DYNAMIC CONTEXT 
MANAGEMENT:

ADAPTIVE 
CONTROL:

LEARNING:

DATA SOURCES:

direct interface 
between human 

and environment
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• Task – activities performed by agent in a particular role 
• Subtask – next level of decomposition of Task 
• Agent – job performer (human or CP element) 
• Cyber-Physical Elements (machine counterpart of human) 
• Task Re-allocation – re-assignment of activities based on criteria 
• Environment – set of factors that affect the operation of the CPHS 
• Contingency Event – condition that causes task execution to deviate from routine 
• Disruption – perturbation from external or internal sources that require CPHS to 

adjust/adapt operation. 

SHARED GOVERNANCE AND TASK EXECUTION 

Responsibilities divided between human(s) and cyber-physical elements. During nominal 
operation, human is responsible for high-level planning and decision making and cyber-physical 
elements are focused on execution of detailed actions. During contingency situation, safety over-
rides used to avoid hazardous actions/behaviors. Humans can intervene in CPS operation to 
redirect, take-over, or suspend operation. CP elements can also take over human task upon 
human request, or after human inactivity period exceeds a time threshold and CP queries during 
that period go unanswered by human.  

HUMAN INTENT IDENTIFICATION: POSSIBLE METHODS 

Possible methods to use for human intent identification are:  
1. Customize control HW and SW for individual human: this implies flexible HW and SW 

implementation that can be “trained” in the field. This requires special tools and training 
procedures to create scenarios for human in the CPHS, record physiological responses, 
and update SW tables and FPGAs 

2. Ensure controller (HW, SW) has flexibility to work with any human agent, involves 
training the system like modern speech recognition.  

3. Human explicitly communicates intent to controller HW and SW. For example, human 
employs hand-held controllers to change CPS behaviors. Downsides: of this method is 
that human is forced to focus on control, not high-level planning and decision making. It 
can be inconvenient if human has to carry equipment (flashlight, weapon). Usually 
humans don’t multi-task well since there is potential for cognitive overload, stress, and 
divided attention. 

HUMAN BEHAVIOR MODELING 

The purpose of HBM is to represent human interactions with CPS under various conditions such 
as cognitive overload, fatigue, high stress, and infrequent events. HBM requirements include 
determining the right level of fidelity based on domain, context, and task requirements, 
incorporating limitations of CP elements, incorporating human cognitive limitations, exhibiting 
adaptability and creativity, and defining criteria for when to intervene in CP processes.  
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The key concepts in human behavior modeling include: task (required knowledge/skills); person 
(knowledge/skillset, availability, location); role (qualification, training, testing, experience, 
location); and constraints (cognitive, attentional resources, geospatial).  
 
Since not every aspect of a human needs to be modeled, models need to be appropriately 
scoped. For example, for cognitive tasks such as planning and decision-making, we do not need 
to model human kinematic constraints. But we most definitely need to model human cognitive 
limitations and adaptation constraints.  
 
The level of abstraction of HBM varies with purpose. It ranges from general to specific. For 
example, a Smart Thermostat uses Hidden Markov Model to model occupancy and sleep patterns 
of residents to save energy – a high level behavior. On the other hand, impulsive injection of 
insulin uses math models for diabetes mellitus. In this case, a specific model determines the need 
for insulin injection by monitoring glucose level relative to threshold level for administering 
insulin – a low level model. 
 
Model fidelity is based on model purpose, task/activity, interaction level with CPS, and sensitivity 
to environmental factors.  
 
In sum, when performing HBM, two key questions need to be answered: What aspects of humans 
should be modeled (i.e., represented) for a specific adaptive CPHS? And Is there a methodological 
basis for determining appropriate sparse representation of a human for a particular class of 
CPHS? 

MACHINE LEARNING: OPPORTUNITIES 

Multiple sources of learning, sensors, networks, people. Complicating factors are partial 
observability, noisy sensors, disruptive events. Machine learning options can be supervised 
learning, unsupervised learning, reinforcement learning. Table 5 discusses these options.  
 

Table 5. Machine Learning Techniques  
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ILLUSTRATIVE EXAMPLE AND PROTOTYPE CPHS: PERIMETER SECURITY OF C-130 AIRCRAFT 

Context: Forward Base Operations of C-130 aircraft security. C-130 parked on a landing strip 
adjacent to semi-urban environment with sparse roads. Parked C-130 offers adversaries ample 
attack opportunities. Perimeter security is provided by: video cameras and LWIR mounted on 
built-up structures in the vicinity, and unattended ground sensors (UGS) around the aircraft.  The 
deplaning troops add additional UGS around the aircraft to further increase security. The 
commander in charge of aircraft perimeter has a quick set-up laptop with wireless connection to 
sensors and human/robotic sentries, real-time monitoring dashboard with facilities for anomaly 
detection, machine learning, selective region monitoring, and dynamic resource allocation.  
 

 
Figure 2. C-130 Aircraft Security 

 
In this scenario (figure 2), a C-130 military transport is parked on a landing strip in the vicinity of 
a military outpost comprising several buildings. With security of the aircraft being paramount 
concern, the perimeter of the aircraft is secured by two kinds of surveillance assets: fixed-
location, building-mounted cameras and downward-looking cameras mounted on airborne 
UAVs. For this is relatively small perimeter, the UAVs employed are quadcopters. 
 
A simulator for this scenario is shown in figure 3. As shown in this figure, the Mission View is a 
plan view of the C-130 aircraft perimeter and surroundings.  Two buildings are visible in this view.  
On each building a video-camera is mounted with views of the stationary aircraft from different 
directions. The shadows on the ground indicate the intersection of the viewing volume of each 
camera with the ground. 
 
Three quadcopters, assigned to this surveillance mission, are ready for launch. These 
quadcopters can be seen on the ground at the bottom center of the mission view.  There are five 
cameras in all (three quadcopters QC 1 – QC 3 and two building-mounted cameras BC 1 and BC 
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2). The views from each of the five cameras are shown at the lower right.  The quadcopter 
cameras do not show anything because the quadcopters are still on the ground awaiting launch. 
 
The Controls section in the bottom center of the simulator allows manual (human) control of the 
quadcopters and of the azimuth and elevation of the building cameras. The Selected Camera 
View shows the field of view for the camera corresponding to the currently selected control tab 
(BC 1 in figure 3). 
 

 
Figure 3. Scenario Simulator 

 

MULTI-ASSET CONTROL APPROACH 

This scenario was chosen because it affords the opportunity to demonstrate three resilience 
aspects of the solution: adaptive coverage; human in the loop decision-making; and collaboration 
among multiple agents. 
 
The problem is to control the collection assets (UAVs and fixed cameras) to optimize multi-sensor 
coverage of the aircraft perimeter.  It is important to recognize a couple of key points about 
coverage: 
 

• It is not adequate for a portion of the perimeter area to be within the field of view of a 
camera; the resolution (size of that area within the image) is also important.  (Otherwise, 
it becomes possible to achieve complete coverage with a single quadcopter at very high 
altitude.) 

• Where possible, coverage of a given area by multiple cameras is preferable to coverage 
by a single camera. This adds redundancy (an important resilience characteristic) and 
improves motion detection through stereo effects. 
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Taking these considerations into account, we employ a relatively simple fitness function to 
characterize perimeter coverage.  The fitness function has the following properties: 
 

• The coverage area is discretized into “tiles.” The fitness function considers the centroid 
of each tile and its intersection with the viewing volume of each camera. 

• For each tile and each camera, a contribution to the fitness function is made if the 
centroid is visible to the camera, with the contribution increasing with higher resolution 
(i.e., decreasing with distance from the centroid to the camera). 

• Optimization of coverage is analogous to maximization of the fitness function. 
• The fitness value at each tile (i.e. the contribution of each tile to the overall fitness 

function) is maintained separately, forming an array of coverage values, which are used 
by quadcopter in their respective control algorithms as described below. 

• The fitness function, which is computed centrally, is used in a distributed manner. 
 
To flexibly allocate and move assets to optimize coverage, the algorithm employs multiple levels: 
 

• Multiagent control:  Upon launch, each quadcopter moves to an area designated by the 
human operator.  When placed into automated mode, each quadcopter uses the centrally 
computed coverage array to determine the coverage at the edges of its field of view.  
When there is more coverage on one side than the other, the quadcopter moves towards 
the region with less coverage.  Note that this approach allows independent movement of 
all quadcopters.  However, the motion is coupled, since the coverage at the edge of one 
quadcopter’s field of view is affected by the motion of “nearest neighbor” quadcopters. 

• Adaptive:  When the situation changes, for instance due to malfunction or battery 
depletion of one UAV, the other vehicles move to adapt to the change. 

• Human-in-the-loop: If multiagent control does not result in adequate coverage of the 
aircraft perimeter, a signal to the operator is raised to indicate failure of currently 
allocated assets to carry out the task. Then it is up to the human to take an appropriate 
action (e.g., launch one or more additional quadcopters). 
 

The results of the foregoing strategy are shown below. Figure 4 shows the dashboard modified 
to show camera coverage of the discretized aircraft perimeter area, as well as the fitness function 
value (here, 18.7 with coverage only from the building-mounted cameras). 
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Figure 4. Dashboard Showing Coverage Area  

(The quadcopters are not yet launched, so the coverage is due only to the building cameras.) 

 
Figure 5 shows the results when one quadcopter is flying. Note that the control “Automatic 
fitness optimization” is checked, so that the quadcopter is moving in a manner to maximize the 
fitness function. The coverage area here shows the coverage due to the quadcopter. The 
messages in the mission log show the quadcopter’s search for the optimal location.  
 

 
Figure 5. Dashboard with one Quadcopter During Optimization of Fitness Function 
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Figure 6. Optimal Location for a Single Quadcopter 

 
Figure 6 shows the dashboard views after the single flying quadcopter has found the optimal 
position. Note that the quadcopter has climbed to 60 meters and yawed to -20 degrees to fit its 
field of view with the aircraft perimeter. 
 

 
Figure 7. Optimal Locations for Three Quadcopters 

 
In Figure 7, three quadcopters are shown in flight. They have deliberately separated to increase 
the quality of coverage for the entire perimeter.  Note that the selected quadcopter has rotated 
its field of view to concentrate on the east end of the perimeter. 
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It should be noted that these results are strongly dependent on the form of the fitness function, 
which will continue to be refined in the next phase. 

HUMAN ROLES AND CPH FUNCTIONS 

CPH system comprises: 
• Physical: laptop with smart dashboard software, sensors, robotic sentries; wireless 

connection to building mounted sensors and unattended ground sensors  
• Cyber: monitoring, planning, visualization, resource allocation, machine learning software 
• Human: commander in charge of maintaining aircraft security; UAV operator 
• Human roles: 

– supervision, sensor tasking (what region to surveil); robotic/human sentry tasking 
(what region to patrol), intrusion monitoring, re-planning perimeter defense 
(incoming intelligence) 

• CPS Functions: 
–  learn commander priorities in various contexts; learn normal traffic and intruder 

patterns; follow patrol schemes; generate context-sensitive visualizations; issue 
alerts upon intrusion detection, reconfigure perimeter defense (standing orders) 

SAMPLE UI AND USER SYSTEM INTERACTION 

The monitoring system comprises 2 monitors (UI for humans-in-the-loop). The monitors provide 
real-time state and status info in color-coded format. Color-coded status of regions R1 through 
R8 is presented through the UI. Green region means region is safe, red means an intruder has 
been detected. Real-time views of the regions are providing data from security cameras. Detailed 
information on each region is provided based on actions on users. Monitor #1 provides overall 
status of individual regions, and real-time view based on updates from security cameras. Monitor 
#2 changes based on actions of human user taken through UI. When a region’s display turns red, 
user clicks on that region’s icon to acquire details. Monitor #2 provides detailed information on 
sensors, motion, location, camera, etc. - options: calling a security crew, turning on alarms, and 
reporting the incident 
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Figure 8. Monitoring System 

 LEVERAGE OF RT-166 BUILDING BLOCKS 

For the experimentation testbed, we are leveraging the capabilities we created in RT-166. A 
prototype UAV whose actions are controlled by a decision-making algorithm such as POMDP.  
The specific criteria that we employed include: 

• Ability to fly in an indoor laboratory as well as outdoors 
• Large enough to carry a powerful onboard computer with a full suite of sensors (camera, 

GPS, IMU) which can run autopilot software as well as POMDP 
• Support for open source software 

 
Flying indoors meant that airplanes were ruled out as well as gasoline-powered motors.  Battery-
powered quadcopters thus became a clear choice.  We selected a class of quadcopters with 
diameter of order 24 inches, with 1000 KV motors and 10-inch propellers, taking a LiPo battery 
with capacity of order 3000-5000 mAH.  There is a wide variety of kits and parts for this class of 
vehicles, and since these are widely used by hobbyists, they are generally quite inexpensive. 
 
For the onboard computer, a combination of Raspberry Pi 3 single-board computer and Navio2 
flight controller was selected.  The Raspberry Pi is a little smaller than a deck of cards but is a 
quad-core 1-GHz 64-bit CPU with 1 GB RAM, costing about $35.  It runs a flavor of Debian Linux 
and so supports essentially all open-source software.   
 
The Navio2 is a flight controller board that connects to the CPU via the GPIO pins.  It carries the 
GPS, IMU, and magnetometer, as well as the PWM controllers for the motors.  It is the most 
expensive component of the entire quadcopter but is essential for autonomous flight. 
 
For the autopilot we selected Ardupilot, an open source program, because of its support for our 
hardware and because there is a wide variety of modes of operation as well as supporting 
modules.  We particularly required guided mode, in which the UAV responds to external 
commands such as moving to a specified position, setting a specified velocity vector, or holding 
at a specified location and attitude.  (An external command is one which originates outside the 
autopilot program.  It can come from a ground station computer over a wireless communications 
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link or from a different program running on the UAV CPU.  Thus, guided mode is useful for fully 
autonomous maneuvers as well as centrally controlled operation.) 
 
Ardupilot supports simulated quadcopters as well as actual ones. This enabled our prototype 
demonstration of control of 3 drones, two simulated and one real quadcopter. At present we 
have two complete operational quadcopters including flight controllers. 
 
Indoor flight in our laboratory presents a special challenge because autonomous flight requires a 
solid GPS lock in the unmodified Ardupilot software.  However, the GPS satellite signals are too 
weak in our laboratory to achieve this lock.  Accordingly, one of our current tasks is to modify 
Ardupilot in order to use position and attitude information obtained from camera observations 
of multiple Aruco markers positioned on the walls and ceiling of our lab.  We have experimentally 
demonstrated good accuracy of this technique but have not yet incorporated it into the flight 
software. 
 

SUMMARY AND CONCLUSION 

Next generation adaptive CPHS are a type of socio-technical systems in which computation, 
communication, and control are tightly integrated (Schirner et al., 2013). They comprise cyber, 
physical, and human elements and are capable of learning and adaptation based on operational 
context. Operational context is defined by the state of the environment, state of the human, and 
state of the cyber and physical components. State of the environment is described by attributes 
such as observability, threat level, and terrain and weather characteristics. The state of the 
human is described by cognitive load, fatigue level, vigilance level, and familiarity level with the 
task at hand. The state of the cyber-physical elements in the adaptive CPHS is described by 
computation and communication load, and level of knowledge of the task, environment, and the 
human counterpart. Next generation adaptive CPHS are safety-critical systems that can range 
from a small device to large-scale system-of-systems (SoS). The fact that humans can play a 
variety of roles in adaptive CPHS leads to increases in system complexity and vulnerability to 
cyber-attacks.  Examples of adaptive CPHS are self-driving vehicles, adaptive energy grids, and 
healthcare enterprises. 
 
Adaptive CPHS in the military need to operate safely in uncertain, dynamic environments with 
potentially hostile and deceptive agents. Adaptive CPHS face three key technical challenges: how 
to infer human intent; how to maintain shared context, and how to incorporate strong time 
semantics. Existing design tools are inadequate for modeling, analyzing and integrating adaptive 
CPHS for three main reasons. First, they address cyber, physical and human elements in isolation. 
Second, they tend to have overly simple human behavior models that do not reflect reality. Third, 
they do not address interactions between cyber, physical and human elements and their timing 
and synchronization constraints. A key challenge of adaptive CPHS is maintaining shared context 
in the face of disruptions. Flexible knowledge representation and machine learning are key to 
adaptive CPHS. Offline machine learning in the form of supervised learning can help the cyber-
physical elements learn the preferences and priorities of humans across a range of contexts. 
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Online machine learning in the form of supervised learning and reinforcement learning can help 
the CPHS sustain high levels of performance in the face of disruptions.  
 
The accomplishments of the first year include: a precise definition of adaptive CPHS; specification 
of a real world adaptive CPHS scenario of interest to DoD; development of a testbed to prototype 
adaptive CPHS; and use of the testbed to create a preliminary prototype of an adaptive CPHS. 
The prototype showcases the capabilities of an adaptive CPHS for maintaining perimeter security 
of a parked C-130 aircraft. The adaptive CPHS in this case comprises unattended ground sensors, 
fixed and mobile sensors, surveillance and adaptive planning and execution dashboard, mission 
commander who commands and controls distributed assets using the capabilities of the 
dashboard, and human sentries who change patrol patterns based on the mission commander’s 
directives. The prototype demonstrates the dynamic coverage of the aircraft perimeter based on 
optimizing coverage using a fitness algorithm.  
 

REFERENCES 

Madni, A.M. Next Generation Adaptive Cyber-Physical-Human Systems, SERC MBSE Colloquium, 
Washington D.C. July 12, 2018 

 

Madni, A.M., Madni, C.C. and Sievers, M. “Adaptive Cyber-Physical-Human Systems,” 2018 
INCOSE International Symposium, July 7-12, 2018. 

 

Gelenbe, E., Gorbil, G. and Wu, F. “Emergency Cyber-Physical-Human Systems,” International 
Conference on Computer Communications and Networks (ICCCN), Aug 2012. 
 
Inagaki, T. “Adaptive Automation: Sharing and Trading of Control,” Handbook of Cognitive Task 
Analysis, 8: 147-169, 2003. 
 
Kay, M., Choe, E.K., Shepherd, J. Greenstein, B., Watson, N., Consolvo, S., and Kientz, J.A. “Lullaby: A 
Capture and Access System for Understanding the Sleep Environment,” UbiComp, 2012. 
 
Lu, J., Sookoor, T., Srinivasan, V., Gao, G., Holben, B., Stankovic, J., Field, E., and Whitehouse, I. “The 
Smart Thermostat: Using Occupancy Sensors to Save Energy in Homes, SenSys, 2010. 
 
Madni, A.M. “Integrating Humans with Software and Systems: Technical Challenges and a Research 
Agenda,” Systems Engineering, Vol. 13, No. 3, pp. 232-245, Autumn (Fall) 2010.  
 
Madni, A.M. “Integrating Humans With and Within Software and Systems: Challenges and 
Opportunities,” (Invited Paper) CrossTalk, Journal of Defense Software Engineering, May/June 2011, 
“People Solutions.” 
 



 

Report No. SERC-2018-TR-112                                                                           September 6, 2018 

22 

Madni, A.M. “Generating Novel Options During Systems Architecting: Psychological Principles, 
Systems Thinking, and Computer-Based Aiding,” Systems Engineering, Volume 17, Number 1, pp. 1-
9, 2014.  
 
Madni, A.M. “Mutual Adaptation in Human-Machine Teams,” Intelligent Systems Technology, Inc., 
Document No.: ISTI-WP-02-012017, January 11, 2017. 
 
Madni, A.M., Samet, M.G., and Freedy, A. “A Trainable On-Line Model of the Human Operator in 
Information Acquisition Tasks,” IEEE Transactions of Systems, Man, and Cybernetics, Special issue on 
Human Factors in Computer Management of Information for Decision Making, Vol. SMC-12, No. 4, 
July/August, 1982, pp. 504-511.  
 
Madni, A.M. and Sievers, M.  “Model Based Systems Engineering: Motivation, Current Status and 
Research Directions,” accepted for publication in Systems Engineering, Special Issue on Model-Based 
Systems Engineering, 2018. 
 
Munir, S., Stankovic, J.A., Liang, C.M., and Lin, S. “Cyber Physical System Challenges for Human-in-
the-Loop Control,” 8th International Workshop on Feedback Computing, USENIX Federated 
Conference, June 25, 2013. 
 
Neches, R. and Madni, A.M. “Towards Affordably Adaptable and Effective Systems,” Systems 
Engineering, Vol. 16, No. 2, pp. 224-234, Summer 2013. 
  
Robinson, R.M., Scubee, D.R.R., Burden, S.A., and Sastry, S.S. “Dynamic Inverse Models in Human-
Cyber-Physical Systems,” Proceedings Micro-and Nanotechnology Sensors, Systems and Applications 
VIII, SPIE Defense & Security, vol. 9836, 2016. 
 
Schirner, G., Erdogmus, D., Chowdhury, K., and Padir, T. “The Future of Human-on-the-Loop Cyber-
Physical Systems, Computer, 46, 1(2013), 36-45, 2013. 
 
Sheridan, T. B. Telerobotics, Automation, and Human Supervisory Control. MIT Press, Cambridge, 
1992. 
 
Sowe, S.K., Simmon, E., Zettsu, I., deVaulx, F., and Bojanova, I. “Cyber Physical-Human Systems: 
Putting People in the Loop, IEEE Computer Society IT Professional, Vo., 18, Issue 1, 2016. 
 
Wang, E.K., Ye, Y.,Xu, X., Yiu, S.M., Hui, L.C.K., and Chow, K.P.  “Security Issues and Challenges for 
Cyber Physical System,” 2010 IEEE/ACM International Conference on Green Computing and 
Communications & 2010 IEEE/ACM International Conference on Cyber, Physical and Social 
Computing, IEEE Computer Society, pp. 733-738. 


