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Executive Summary 
This is the final technical report of the Systems Engineering Research Center (SERC) research task 
WRT-1025. This research investigated digital twin design architectures that support Artificial 
Intelligence (AI) and Machine Learning (ML) formalisms working side-by-side as a team. The 
unique aspects of this research are the use semantic technologies that can leverage AI and ML 
providing complementary and supportive roles in the collection, formalizing representations and 
processing of data, identification and correlation of events, in evolving spatial contexts and 
automated decision making throughout the system lifecycle. The research developed graph 
embedding procedures with ML tasks, which together can enhance digital twin design and 
decision making to factor in evolving temporal and spatial information, such as those 
encountered in urban settings.  

This research builds upon our previous work on teaching machines to understand urban 
networks with graph analytics techniques. These advances are due in part, to advances in 
computer, communications and sensing technologies that evolved over the past three decades 
in large-scale urban systems and are now far more heterogeneous and automated than their 
predecessors. They may, in fact, be connected to other types of systems in completely new ways. 
These characteristics create challenges now that we have opportunities to better integrate 
mission engineering, system design, analysis and integration of multi-disciplinary concerns. We 
have made progress against these challenges by teaching machines to understand graphs that 
represent urban networks. This report discusses research efforts and accomplishments for using 
a recently developed graph autoencoding approach to encode the structure and associated 
network attributes as low-dimensional vectors. We sucessfully demonstrated the approach on a 
problem involving identification of leaks in urban water distribution systems. 

We have made unique progress and have been able to share work in SERC events such as the 
workshop on AI4SE and SE4AI. However, there is still more research needed. We would propose 
to investigate ways for automating cluster identification, and test the scalability of our approach 
(i.e., test larger graphs). In addition, several objectives from previous reports are still pending 
such as exploring composition (i.e., learning graph topology in parts), decoder architectures, and 
linking models of graph topology to models of system behavior and identification of events, 
among others. Therefore, needed investigations should consider the following set of basic 
questions, such as does graph composition help aleviate the challenges posed by larger graph 
sizes and complexity?  
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1 INTRODUCTION 

The increased use of models such as descriptive models for mission and systems engineering is 
providing additional rigor to characterize digital representations of mission and systems that link 
to cross-domain discipline-specific models. Semantically rich representations are needed for all 
of these type of model elements in characterizing a digital twin. Knowledge representation plays 
a key role in applying Artificial Intelligence (AI). Ontologies and associated semantic technologies 
provide a means to domain modeling and reasoning that are needed across the domains of a 
digital thread instantiated in digital system models (DSM). These DSMs evolve over time as digital 
twins, which co-evolve with physical instantiations of a DSM. Our prior research has used 
ontologies and semantic technologies to formalize knowledge with interoperable ontologies 
enabling reason about systems engineering across domains [5][7][13][17][19][20][21] [33][50].  

There is also a wealth of data enabled by an explosion of sensors (e.g., Internet-of-Things), real-
time monitoring and synchronization of data associated with events of interacting capabilities 
within evolving environments to understand physical systems throughout their lifecycle that can 
be factored back into digital twins. Machine learning (ML) techniques are used for classification, 
clustering, and identification of association relationships. AI and ML technologies will be deeply 
embedded in new methods and tools for model-centric engineering (MCE), as well as new digital 
twin operating system environments for observation, reasoning and physical systems control. 
Realization of this opportunity is complicated by the reality that within the world of MCE, 
present-day use of AI and ML technologies is fragmented. However, we are at a crossroads for 
leveraging AI and ML enabling technologies in the broader context of MCE. 

This research started to develop rules associated with ontologies for knowledge representation, 
and consideration of the ways in which ontologies and rules can work together to respond to 
sequences of events about interacting objects and agents in evolving spatial contexts (e.g., 
environments) to support decision making. Formalization of MCE models provides a foundation 
for extending with ontologies and rules that can integrate cross-domain information; this type 
of AI provides for logic and reasoning [16]. We also need complementary ML techniques for 
classification, clustering, and identification of association relationships, remembering the details 
of data streams, and finding anomalies in behavior enabled by rich data sets. Recent advances 
have created ML algorithms to learn the structure of large-scale graphs and their attributes. An 
objective is to overcome limits in ML techniques that struggle to explain the rationale for decision 
making, by integrating multi-domain semantic modeling with rule-based reasoning and providing 
a means for representations of sequences of objects and events over time. Our brains do this 
fairly well (in addition to dealing with uncertainty), but we want to computationally enable these 
types of capability for MCE by characterizing AI/ML design patterns that support architecting 
effective digital twins by bringing AI and ML together in a new way [5].  

This report is concerned with the integration of recently developed graph embedding procedures 
with machine learning tasks, which together can enhance digital twin design and decision making 
in urban settings. It builds upon our previous work [2] on teaching machines to understand urban 
networks with graph analytics techniques.  
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A digital twin is a digital representation of a system that mirrors its implementation in the 
physical world through simulation and real-time monitoring and synchronization of data 
associated with events [6]. The associated software and algorithms work to provide superior 
levels of attainable performance in system development and operation. The digital twin concept 
dates back to the 2000-2010 era; it was initially proposed as a way to support the design and 
operation of air vehicles for NASA.  Since then, the range of potential applications has expanded 
to include automotive components, manufacturing processes, personalized medicine and smart 
cities, among others. Within the world of model-centric engineering, there is strong need for 
support throughout the entire systems lifecycle. If successful, AI and ML technologies will be 
deeply embedded in new methods and tools for model-centric engineering, as well as new digital 
twin operating system environments for observation, reasoning and physical systems control [5]. 

Realization of this opportunity is complicated by the reality that, within the world of model-
centric engineering, present-day use of AI and ML technologies is fragmented and at a crossroads 
[5].  During that past decade, systems engineering researchers in AI have tended to focus on: 

 The comprehensive development of ontologies for a domain, (e.g., human genome, 
satellites) 

 System development activity (e.g., requirements, behavior modeling) 
 Extension of development activities from common core ontologies (e.g., extensions for 

geospatial, time, actors, events,) 
 Higher-level basic formal ontologies [4]  

Far less attention has been given to the development of rules associated with ontologies, and 
consideration of the ways in which ontologies and rules can work together to respond to events 
and support decision making. At the same time, machine learning techniques provide 
comprehensive support for the classification, clustering, and identification of association 
relationships and anomalies in streams of real-world data. Remarkable advances in machine 
learning algorithms (2016-2019) include the ability of a machine to learn the structure of large-
scale graphs and their attributes. The consequences of this recent capability for the model-based 
systems engineering community would appear to be enormous [16]. And yet, machine learning 
techniques struggle to explain the rationale for decision making, which is a task that multi-
domain semantic modeling and rule-based reasoning can complete with ease. 

The key research challenge is how to design the digital twin elements and their interactions so 
that collectively they can support a wide variety of systems engineering methods and processes. 
Previous University of Maryland research focused on semantic foundations and reasoning for 
two application areas, energy-efficient buildings and brain cancer profiles [24]. In both cases, ML 
techniques for classification/clustering of data provided useful feedback on the structuring of 
ontologies for semantic reasoning.  While this research showed promise, our current methods 
are far from what seems possible. Additional research is needed to understand the range of 
possibilities for which machine learning of large-scale graphs and their attributes can support 
activities in model-centric engineering. This knowledge will be used to guide the architectural 
development of future digital twins enabled by AI-ML technology. Fundamental questions 
include: Can we develop design methods to enable machine learning to improve semantic 
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modeling? What design methods can enable semantic modeling to improve machine learning?  
How do we employ these methods in the context of model-centric engineering and digital twins? 

This research provides progress to help us understand how to design the digital twin elements 
and their interactions so that collectively they can support two purposes:  

 Development of methods and tools for model centric engineering, and  
 Development of digital twin operating system environments for observation, reasoning 

and system control.  

We believe that the knowledge gained provides some steps to be used to guide the architectural 
development of future digital twins and threads enabled by AI-ML technology. 

1.1 OBJECTIVES 

At the start of this research task, the primary near- and long-term objectives were to: 

 Develop basic mechanisms for semantic / machine learning interaction. Investigate 
opportunities for semantics to broaden the scope of understanding an ML processor will 
have of a domain. Conversely, investigate methods for ML to assist the semantic modeling 
through recording of past scenarios and pathways of decision making, and increases in 
efficiency of decision making.   

 Teach machines to understand small graphs having static graph topologies. Develop new 
approaches for graph modeling and analysis that combine semantic models with graph 
structure in ways that are computationally efficient. 

 Develop methods for auto-encoding designs in system graph representations.  Develop 
encoder and decoder approaches that preserve the overall system graph. 

 Identify events via time-series anomaly detection using dynamic attribute network 
embedding (DANE) or other approaches. Show how these approaches would be 
integrated with dynamic simulation. 

 Integrate simulation and machine learning approaches. Operational digital twins are 
mobile and need to make decisions to deal with events in the right place and the right 
time. The research shall investigate machine learning capability for reasoning with events, 
space and time, and linking these capabilities to simulations of military interest. 

 Develop a set of heuristics and design principles to use AI-ML approaches to develop 
digital twins and model-centric engineering. 

 Develop a demonstration showcasing application of the new AI-ML design methods.  The 
demonstration should involve at least two digital twins being used in different 
environments. If possible, the demonstration should be based on information relevant to 
one of the SERC’s Service sponsors for research in model-centric engineering. 

 Develop a set of future research challenges based on knowledge accumulated of the 
course of the previous year’s research. 
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1.2 APPROACH AND CASE STUDY 

This one-year project focused on the needs for the design of digital twins that work as operating 
systems, with AI and ML formalisms working side-by-side as a team providing complementary 
and supportive roles in the collection of data, identification (or prediction) of events, and support 
for automated decision making throughout the system lifecycle. We specifically looked to 
understand how digital twin elements and their interactions should be designed so that 
collectively they can support two purposes: (1) Development of methods and tools for model-
centric engineering, and (2) Development of digital twin operating system environments for 
observation, reasoning and systems control.  

Figure 1 shows the essential details of a digital twin architecture for the proposed approach. We 
envision digital twins working as data- and event-driven operating systems with semantic models 
responsible for knowledge representation and reasoning, and machine learning responsible for 
prediction of likely demands on the system, learning the structure and sequencing for various 
representations, identification of objects / events, and remembering scenarios from past 
activities. 

 
Figure 1. Digital twin (cyber physical) working alongside of a physical twin 

Figure 2 is an extension of Figure 1 and shows the proposed architectural template for a 
combined multi-domain semantic modeling and machine learning approach to the 
implementation of digital twin applications. 
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Figure 2. Architectural template for the construction of digital twins. Box 1: Semantic modeling, Box 2: 
machine learning/data mining, Box 3: Machine learning/network modeling. 

Semantic modeling is concerned with the development of knowledge representations 
(ontologies) for multi-domain applications, population of semantic graphs with data (so-called 
individuals), and development of rules to transform semantic graphs in response to events and 
to ensure consistency and completeness of provided data [33]. Semantic graph models persist 
throughout the system lifecycle and, thus, are central to digital system models (DSMs) and digital 
threads. Instead of creating a small number of all-encompassing ontologies and associated rules, 
our goal [19][20] is to put the development of data, ontologies and rules on an equal footing (see 
Box 1 of Figure 2), and create architectural templates for a specific domain or design concern (a 
convenient name is the data-ontology-rule footing). Machine learning techniques are concerned 
with learning the structure and sequence of various representations, identifying objects and 
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events, remembering the details of data streams, and finding anomalies in behavior enabled by 
rich data sets.  

Our proposed architectural template (see Box 2 of Figure 2), employs data mining/machine 
learning techniques for three styles of learning – tree-based classification, clustering algorithms, 
association algorithms – to gain insight into the data [67]. The final part of the proposed template 
(see Box 3 of Figure 2) is concerned with machines learning the structure of large-scale graphs 
and their attributes [19].  

Our research objective focused on finding ways in which Boxes 1 through 3 can work together 
as a team to solve problems in a way that takes advantage of present-day machine learning 
techniques, while also allowing for explanation of rationale in decision making. Our brains do 
this fairly well (in addition to dealing with uncertainty), but we want to computationally enable 
these types of capability for model-centric engineering by characterizing AI/ML design patterns 
that support architecting effective digital twins by bringing AI and ML together in a new way. 

Ultimately, a goal, not accomplished in this research is to address a closely related, but more 
difficult, problem is one of using combinations of AI/ML for the modeling of digital threads 
throughout the systems lifecycle as reflected in Figure 3 [5]. A digital thread is a communication 
framework that allows connected data flow and an integrated view of the system’s data 
throughout its lifecycle, across viewpoints that are isolated functional perspectives. A fully 
implemented thread enables anticipation and effective communication bi-directionally up and 
down streams of dependency in the lifecycle. This framework ensures all participants 
(stakeholders) have access to and can utilize the most current data and can react quickly to 
changes in the system objectives or in response to new insight.  For our purposes, a simple way 
of distinguishing twins from threads is as follows: twins represent the state of a system; threads 
capture the evolution of systems through a sequence of states and transformations [5].  And 
since systems engineers focus on different things and different stages of the lifecycle – concept, 
design, manufacturing, test, operations, retirement – ease of systems adaptability and 
interoperability is a major challenge in getting digital threads to work. 

 
Figure 3. Schematic of a digital thread framework supporting flows of data and integration of viewpoints across 

the system lifecycle. 
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1.3 SCOPE 

Our program of investigation was motivated by the needs of two case study problem domains.  
This work planned to take initial steps toward studying their behavior as event- and data-driven 
behavior on spatial-temporal graphs. The demonstration prototypes would be designed to 
highlight the ways AI-ML can work together to manage these concerns. 

Case Study Problems.  The two digital twin domains are as follows:  

1. Skyzer UAV Search and Rescue. This case study will leverage, refine and/or extend an 
evolving surrogate pilot developed for a Skyzer UAV operating in the context of Search 
and Rescue mission scenarios, in particular, landing scenarios in the context of ship-
based operations, command and control, and flexible autonomy [16]. The problem 
domain provides a rich environment for temporal and spatial interactions, and also 
brings in lifecycle considerations of the digital twin caused by repeated missions in 
different environmental conditions.  

2. Vehicle Traversal of a Traffic Intersection. The second case study involves a digital twin 
vehicle that has to traverse a busy traffic intersection safely and without causing an 
accident. Again, this case study also provides a rich environment for temporal and 
spatial interactions, and also brings in lifecycle considerations of the digital twin in 
evolving environmental conditions.  

These case study problem areas share: (1) the presence of multiple domains, (2) event-driven 
behaviors, (3) multiple streams of heterogeneous data, and (4) scenarios that are dynamic and 
time critical. Looking ahead, the demonstration prototypes will be extrapolated to DoD vehicle 
operational scenarios as our objectives are to be able to transition the research in the future to 
other SERC-sponsor services. 

The efforts planned to use two case studies, with one that includes the Skyzer System model 
discussed in this report to provide a means for demonstrating and explaining AI/ML for MCE in 
the context of mission, system and discipline-specific models and scenarios already understood 
by SERC research task sponsors. However, as discussed starting in Section 3, the efforts to 
consistently reconstruct a graph consumed most of the effort. While these efforts resulted in 
positive results related to teaching machine to understand graphs, we were not able to directly 
apply these results to these use cases. 

1.4 SUMMARY STATUS OF ACCOMPLISHMENTS 

The following provides a summary of our research that has been accomplished on this task. 
Additional details are provided starting Section 3. Our investigations made progress toward the 
objective in two areas: (1) semantic modeling and reasoning with graphs, and (2) teaching 
machines to understand graphs, which has been the most important part of this research. The 
semantic modeling and reasoning side address the basic questions such as: how to represent 
various types of graph and create hooks to backend computational support for graph analysis.  

To summarize the efforts and accomplishment, we have:  
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 Analyzed different graph embedding approaches. 
 Decided to proceed with the Graph Autoencoder (GAE) proposed by Kipf et al. [43] 
 Determined that guarantees of correct reconstruction of the graph topology and 

attributes using the GAE framework depend on the convergence of the optimization 
algorithm, the encoder architecture, and the decoder architecture. 

 Investigated how learning curves can help diagnose underfit, overfit and optimization 
convergence issues, and assist in the design of the GAE architecture. 

 Investigated requirements for convergence of the optimization algorithm. 

We presented our research at the SERC Sponsor Review on November 18, 2020 [6] and the 
AI4SE/SE4AI Research Workshop in October [15]. The presentations were well received and 
some expert attendees (e.g., keynote speakers) at the AI for SE & SE for AI (AI4SE/SE4AI) 
Workshop noted that combining semantics with ML is a unique approach and contribution. 

There is still research needed to devise a formula that allows us to look at the input graph and 
determine the neural network architecture that is required to reconstruct it precisely with a high 
degree of certainty.  

1.5 ORGANIZATION OF DOCUMENT 

Section 1 provides an overview of the context for the needed research, objectives, approach, 
planned case study, brief summary of accomplishments and organization of this report. 

Section 2 provides some information on the background associated with the incubator projects 
to set context for the needed research. 

Section 3 provides an overview of the research that is discussed in more detail in Sections 4 and 
5, in addition to providing some underlying information related to graphs. 

Section 4 describes considerations for using semantic modeling with graphs, by describing 
different types of graphs, approaches to graph analysis and semantic rules for reasoning about 
graphs. 

Section 5 describes an area of the research that consumed the most amount of time for this 
research, where we accomplished a key objective to teach machines to understand graphs. This 
section discusses the details that advanced throughout the research. 

Section 6 summarizes the deliverables and events. 

Section 7 provides a summary of the results as well as describing a few next steps related to 
things that emerged as additional needs out of the research. 

Section 8 lists acronyms and abbreviations used through the report. 

Section 9 lists trademarks to different tools and technologies. 

Section 10 provides relevant references. 
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2 BACKGROUND AND CONTEXT 

This section provides some background and context described in the SERC WRT-1011 Final 
Technical Report of the incubator projects that resulted in this research and report [5]. 

Digital Twins: What’s the problem? How is it done today? Who cares? Challenges? A digital 
twin is a cyber (or digital) representation of a system that mirrors its implementation in the 
physical world through real-time monitoring and synchronization of data associated with events. 
The associated software and algorithms work to provide superior levels of attainable 
performance in system development and operation. The digital twin concept dates back to the 
2000-2010 era; it was initially proposed as a way to support the design and operation of air 
vehicles for NASA. Since then, the range of potential applications has expanded to include 
automotive components, manufacturing processes, personalized medicine and smart cities, 
among others.  

Within the world of model-centric engineering, there is strong need for support throughout the 
entire systems lifecycle, and not just the frontend.  As a result, as shown in Figure 4, tool vendors 
such as Siemens and IBM now anticipate that digital twin capabilities will be the likely successor 
to model-based systems engineering (e.g., with SysML). Present-day trends in technology 
development at companies such as Google, Microsoft, Facebook and Apple indicate that AI and 
machine learning (ML) technologies will be deeply embedded in new methods and tools for 
model-centric engineering, as well as new digital twin operating system environments for 
observation, reasoning and physical systems control.  

 
Figure 4. Emergence of Digital Twin Era, a replacement for MBSE with SysML 

Challenges? Realization of this opportunity is complicated by the reality that within the world of 
model-centric engineering, present-day use of AI and machine learning technologies is 
fragmented and at a crossroads. During that past decade systems engineering researchers in AI 
(i.e., knowledge representation and reasoning) have tended to focus on the comprehensive 
development of ontologies for a domain (e.g., satellites) or system development activity (e.g., 
requirements, system mission, behavior modeling) and their extension from common core 
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ontologies [23] (e.g., for geospatial, time, actors, events) and higher-level basic formal ontologies 
[4]. Far less attention has been given to the development of rules associated with ontologies, 
and consideration of the ways in which ontologies and rules can work together to respond to 
events and support decision making. At the same time, machine learning (i.e., modern neural 
networks, data mining) techniques provide comprehensive support for the classification, 
clustering, and identification of association relationships, remembering the details of data 
streams, and finding anomalies in behavior. Remarkable advances in machine learning 
algorithms include the ability of a machine to learn the structure of large-scale graphs and their 
attributes. Looking forward, the consequences of this recent capability for the model- based 
systems engineering community would appear to be enormous. And yet, machine learning 
techniques struggle to explain the rationale for decision making, a task that multi-domain 
semantic modeling and rule-based reasoning can complete with ease.  

A second source of difficulty stems from enhanced expectations for digital twins enabled by 
AI/ML technology. Digital twins deployed in real-world situations will be required to produce 
superior levels of system performance, agility and economy, across multiple scales of problem 
size and spatial and temporal extent. Consider, for example, a scenario where a digital twin 
vehicle has to traverse a busy traffic intersection safely and without causing an accident. As 
illustrated in Figure 5, challenges include the presence of multiple domains, multiple streams of 
heterogeneous data, event-driven behaviors, scenarios that are dynamic and time critical. 
Together with appropriate sensing technologies, AI and ML will be required to observe (monitor) 
the surrounding environment, evaluate options and take actions in a timely manner. Larger scale 
systems, such as a city or fleet of aircraft or ships, will be defined by collections of digital twins. 
From an AI/ML perspective, we expect that individual digital twins will belong to communities, 
and benefit from AI/ML software common to the community needs. 

 
Figure 5. Annotated traffic intersection at the entrance to UMD. 

3 RESEARCH OVERVIEW 

This section discusses the thrust of the research given the context discussed in Section 2. The 
areas of advancements are reflected in the lower right of Figure 6, which extends Figure 4. Figure 
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6 reflects on the autoencoder contribution to the overarching objective to understand graphs. 
One of our research objectives is to understand the range of possibilities for which machine 
learning of large-scale graphs and their attributes can support urban digital twins. This section 
discusses what we learned in order to defined experiments where we have positive progress 
towards the first few objectives for this research. 

 
Figure 6. Neural Network Autoencoder Use to Understand Structure and Features of Graph 

3.1 HISTORICAL PROGRESSION 

We start with a historical perspective on the research steps that we covered in attempt to 
determine the necessary steps for teaching machines to understand graphs as discussed in 
Section 3.2. We first examined different graph embedding approaches developed in recent years 
and concluded that the Graph Autoencoder (GAE) approach proposed by Kipf [43] and co-
workers in 2016 was the most suitable for our purposes, as it is able to encode both structural 
and attribute information while ensuring the generated embedding is an accurate 
representation of the information contained in the graph. We also understood some of the 
limitations of the GAE framework and concluded that guarantees of correct reconstruction of 
the graph topology depend on: 1) the convergence of the Adam optimization [42], 2) the encoder 
architecture, and 3) the decoder architecture. Early work also included experiments with 
JGraphT [41] and shortest path (and all directed paths) analysis. On the machine learning side, 
we did experiments with graph auto-encoder (GAE) embedding vectors and considered 
opportunities for AI-ML cooperation and started investigations of semantic modeling and 
reasoning about graphs prior to our explanation of the key details about the GAE Architecture 
and Optimization Algorithm. 
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Our research next focused on investigating how learning curves can help us adapt the GAE 
architecture to avoid underfit, overfit and convergence issues. Sample case studies from 
common system topologies were reconstructed by the GAE framework, and learning curves were 
used to analyze the effects of model architecture to performance. Those experiments showed 
that certain architectures successfully reconstruct the input graphs, while others lead to 
convergence issues. Hence, our next goal was to devise a mathematical formula that allows us 
to look at the input graph and determine what architecture is required to perfectly reconstruct 
the graph. As a first step towards this objective, we studied the relationship between the input 
graph and the convergence of the optimization algorithm. More details on this aspect of the 
research are provided in Section 5. 

We then moved on to devise a formula that allows us to look at the input graph and determine 
what architecture is required to reconstruct it precisely with a high degree of certainty. These 
efforts are summarized in Section 5.10, but build on the examples and prior efforts summarized 
in Section 5.3. A GAE is neural network-based algorithm, and as a first step towards achieving 
our objective is to understand how neural networks learn graph topology. We divided this 
objective into two sub-tasks: (1) understanding the role of neurons in the learning, and (2) 
understanding the role of layers in the learning.  

We were later able to brief our progress to some well-informed participates at the US-
attendance only AI4SE/SE4AI Research Workshop and later at the SERC Sponsor Review; this 
provided some level of validation about our approach, which was well received based on the 
comments and questions. We emphasized that what may be considered most unique about our 
research is that we are “integrating” semantic graphs based on ontologies and reasoners (this 
would be the deductive side of AI) with graphs representing temporal and spatial events of a 
cyber physical system based on ML. The two most important questions coming from the 
audience that reflect most highly on the significance of our research were related to what we 
believe to be unsolved (especially based on those questions); that is, how to relate information 
gained from ML back into the semantic graphs, and vice-versa, as reflected by the red lines in 
Figure 1 and Figure 2. Ultimately, this type of information would continue to feed forward during 
different phases of the lifecycle as reflected by Figure 3. 

3.2 GRAPHS REPRESENTATIONS AND ANALYTICS 

Figure 7 shows a simplified representation for traditional and machine learning approaches to 
graph representation. Traditional approaches to network/graph modeling employ adjacency 
matrices (or a simplified representation of network adjacencies) to model the topology of 
graphs. If one were to build a semantic model of a graph (see Box 1 in Figure 2) the corresponding 
network ontology would contain classes for the nodes, edges and attributes in a graph and result 
in a structure along these lines. Mathematical algorithms to determine the properties (e.g., 
existence of cycles, connectedness, minimum paths) of a graph are well established. This is graph 
analysis.  

However, for high-dimensional problems that are data sparse, such approaches can quickly 
become computationally prohibitive. A second problem is that traditional approaches to graph 
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representation do not capture the semantics of the network.  The lower half of Figure 7 shows 
that simple approaches to machine learning of graphs come at the problem from an entirely 
different perspective. Instead of focusing on the graph topology (connectivity relations), the 
graph nodes and their attributes (semantics in domain applications) are mapped (or encoded) to 
a low-dimensional embedding space, with the goal of preserving local linkage structure (not 
global structure). Embedding structures are derived from random walk-based procedures; three 
such approaches are LINE [60], DeepWalk [49] and Node2Vec [32]. Decoders are designed to 
extract views of the graph representation from the low-dimensional embedding. Because 
information can be lost in the encoder-embedding-decoder transformation process, the output 
of machine learning for graphs is statistical in nature and, as such, should be interpreted as graph 
analytics (not graph analysis). Graph analytics can support a variety of decision-making tasks, 
including: node classification, node clustering, prediction of anomalies in data streams, link 
prediction, and recommendations for association relationships. 

 
Figure 7. Schematic of traditional (adjacency matrix) and machine learning (graph embedding) approaches to 

modeling graphs. 

We believe that with some imagination, these features could be incorporated into new types of 
tools for model-centric engineering. For example, the upper half of Figure 8 shows an auto-
encoder design of link prediction – one can imagine a “missing feature” recommendation service 
working in parallel with semantics models and rules for system validation and verification.  The 
lower half of Figure 8 shows extensions of the basic auto-encoder design to deep graphs.  Notice 
that unlike the simplified representation of (localized) graph topology shown in Figure 7, the 
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embedding vector for deep graph learning extracts an embedding vector for proximity to all of 
the other nodes.  Thus, one can expect that deep graph representations will contain guarantees 
on arbitrarily high – first, second, third, fourth – levels of nodal proximity.  This would appear to 
be a necessary feature for machine learning to participate in operations for requirements 
traceability.  

 
Figure 8. Auto-encoder design for link prediction and deep graphs. 

3.3 CONTROLLED BEHAVIORS ON SPATIAL-TEMPORAL GRAPHS 

This section moves away from the underlying graph representations and relates the graphing 
technologies to a use case scenario. To understand what the underlying modeling and 
mathematical frameworks might look like, Figure 9 shows four views of required behavior when 
a vehicle needs to make a left-hand turn at a simple traffic intersection. This problem is very 
simple: two cars, one traffic intersection, one left-hand turn and no provision for handling of 
unexpected events. The goals of the individual vehicles can be expressed as pathways (e.g., 
starting from position A, move to B, then C). Vehicle trajectories describe the position of the 
vehicle as a function of time (see bottom left-hand schematic of Figure 9) in so-called space-time 
terrain. When multiple vehicles have pathways that cross the intersection space, the key to 
preventing accidents is to ensure that the space-time trajectories for individual vehicles are well 
spaced (see bottom right-hand corner of Figure 9). Note that this use case can apply to other 
types of vehicles such as tanks and/or air vehicles on a runway on land or on a ship. 
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Figure 9. Spatio-temporal modeling of a vehicle making a left-hand turn at a traffic intersection 

To see what issues and opportunities arise when a problem domain is scaled up, Figure 10 is a 
plan view of runways, taxiways, and holding positions (control points) for plane operations at 
Baltimore Washington International (BWI) airport. Collectively, runway, taxiway and holding 
position entities connect into a graph structure; plane movements can be viewed as controlled 
behavior of multiple entities on a spatial-temporal graph. This problem setup is considerably 
more complicated than the previous example because the graph structure contains many points 
requiring time management of spatial resources and satisfaction of safety concerns. In a 
commercial setting, issues of operational performance and fairness also need to be taken into 
account. When a plane taxis from a departure gate to the end of a runway, the chosen pathway 
can be viewed as a sequence of taxiway segments connected to holding positions. Holding 
positions are control points that require a plane to stop until permission is given to proceed onto 
the next segment of the pathway. The corresponding spatial-temporal trace will be continuous, 
but unlike the previous example not necessarily smooth. This operation repeats many times on 
a daily basis. One role for machine learning is to provide predictions of congestion and associated 
delays, and factor these estimates into the selection of an appropriate pathway. 
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Figure 10. Synthesis of graph data models from pathways and controls in Open Street Map 

4 SEMANTIC MODELING AND REASONING WITH GRAPHS 

The semantic side of the problem as reflected by Box 1 of Figure 2, is where we developed and 
are evolving software to support: (1) the semantic representation of graphs, and (2) the formal 
representation of graphs, plus access to data structures and algorithms for graph analysis with 
JGraphT [41]. 

This work fits into a general framework for multi-domain semantic modeling and reasoning, as 
illustrated in Figure 11. To support the graph data structures and algorithms for graph analysis, 
we envision graph ontologies and graph rules operating at the multi-domain level.  The shadow 
below “graph rules” represents links to backend software for graph analysis. Further details on 
how this can work are provided toward the end of this section (also see the 2017 paper of 
Delgoshaei and Austin [24]). In addition to graph structures, we also need support for 
representation and analysis of pathways and trajectories. Pathways indicate where something 
will go; trajectories describe the course of a measured variable (e.g., position of vehicle or drone) 
over time. To ensure the space-time trajectories of vehicles and drones are adequately 
separated, we need backend support for spatial and temporal reasoning, plus strategies for 
controlling movement. In Figure 11, this is indicated by the shadows adjacent to time rules and 
spatial rules. Networks are simply specialized graphs.  
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Figure 11. Framework for Multi-Domain Semantic Modeling 

4.1 GRAPH TYPES AND DRAFT GRAPH ONTOLOGY. 

The upper half of Figure 12 shows the range of graph types supported by JGraphT. We have sets 
of nodes and edges connected in a variety of ways. Simple graphs have edges that connect nodes. 
Edges are unique and undirected. Multigraphs extend this formalism by allowing support for 
multiple edges between two nodes. Pseudographs add the possibility of edges that self-loop to 
a single node. Edges may also be directed and accompanied by labels and weights. The lower 
half of Figure 12 shows a new graph ontology (work in progress) that we anticipate will act as a 
bridge between the graph / system model data and rules for validating and analyzing graphs. In 
2017 we employed a similar approach for the development of a spatial ontology for two-
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dimensional geometry, with backend support for computation of geometric relationships (e.g., 
polygon set operations) with the Java Topology Suite (JTS) [39]. This worked well, so we are 
hopeful a similar approach will work well for graphs.  

 
Figure 12. Classification of graph types + draft of graph ontology mirroring architecture of JGraphT software 

Graph types are specialization of an abstract graph containing references to string 
representations of the graph topology (i.e., nodes, edges, and their connectivity).  Since many of 
our graphs will be embedded in spatial terrain it also seems reasonable that the graph will also 
have an abstract geometry specification, which in turn will link to the JTS. This latter feature will 
allow for a system to answer questions like: which parts of a graph are within a certain 
geographical region? Or perhaps, what types of graph are within a certain geographical region? 
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4.2 GRAPH ANALYSIS AND SEMANTIC RULES FOR GRAPHS 

In order to support demonstrations, we are particularly interested in directed weighted graphs. 
Graph analysis algorithms of interest include: analysis of edge and vertex connectivity; minimum 
spanning trees; shortest path analysis; identification of sub-graphs having strong connectivity 
and all paths analysis. From a software standpoint, listeners can be attached to the nodes and 
edges of a JGraphT model. Thus, when the value of an element (e.g., a weight on an edge) 
changes, or a vertex or edge is added / removed from the model, an observer will be notified. 
Apache Jena uses this mechanism to fire the execution of rules in Jena [3].  

We used the following scenario to see how JGraphT might be used for static and dynamic mission 
planning, the upper half of Figure 13 shows a small directed weighted graph. The blue contour 
shows the minimum cost pathway from nodes A to L.  The shortest path algorithm circumvents 
the two edges having weight = 10. Now suppose that an environmental event occurs in the 
proximity of the graph, causing delays (increased edge weight) in select edges. The scope of our 
analysis is also extended to include sets of sources (i.e., nodes A, B and C) and sets of targets 
(i.e., nodes L, M and N).  The ‘’all paths’’ problem solves the following problem: given that you 
are located in one of the source nodes, what is the minimum weighted path to one of the nodes 
in the target set?  The environmental event causes the weight of edge B-E to increase from 5 to 
20. The blue contour in the lower half of Figure 13 shows the minimum cost pathway from node 
A to any of the nodes in the target set, in this case, it’s node N.  From a demonstration standpoint, 
we can think of this modification as trajectory adjustment in a dynamic environment.   

The graphs shown in Figure 13 are small and have been manually assembled.  A next logical step 
is to synthesize graphs from Open Street Map data [53] and connect graphs to graph ontologies 
and rules and backend functions. Figure 10 is a multi-domain view of BWI airport, including its 
taxiways, runways and holding positions. One might think that the ways (i.e., <way> … </way> 
tag pairs) would provide holding-position-to-holding-position connectivity. This turns out not to 
be true. Hence, we will need to work a little harder to read in the OSM data (i.e., nodes and ways) 
and organize it into a format suitable for analysis with JGraphT.  A second common problem with 
OSM is missing data. We should be able to use the JGraphT analysis capabilities to ensure the 
graph is fully connected and, thus, suitable for semantic analysis. 
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Figure 13. Shortest path analysis in a directed weighted graph. Top: Minimum weighted cost pathway for A -> L. 

Bottom: Revised pathway analysis when edges in graph are obstructed by a weather event. 

The lower half of Figure 13 shows the general framework for modeling and reasoning with graphs 
in Apache Jena and Jena Rules. A key benefit in working with string representations of graphs is 
that they provide a means for graph analysis via the built-in functions.  Thus, in this setup graph 
analysis algorithms will work along semantic rules for graphs – the details for exactly how this 
should work still need to be determined. 

5 TEACHING MACHINES TO UNDERSTAND GRAPHS 

A key requirement for creating a successful digital twin for model-centric engineering is achieving 
the ability to identify anomalies (faults) in system performance, and to model the behavior of 
processes and interactions among the different domains within a system. Our incubator final 
report proposed Figure 2 as an architectural template for the construction of digital twins [5]. 
Machine Learning (ML) formalisms and Semantic Model representations will work side-by-side 
as a team, providing supportive roles for the collection and processing of data, identification of 
events, and real-time management of operations. 

This section turns the focus on teaching machines to understand graphs (see Box 3 of Figure 2). 
Remarkable advances in ML algorithms (2016-2019) include the ability of a machine to learn the 
structure of a graph and its attributes. So-called graph embedding methods learn a continuous 
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vector space for the graph, assigning each node (and/or edge) in the graph to a specific position 
in the vector space. These embeddings can be later used to advance various learning tasks, such 
as node classification, node clustering, node recommendation, link prediction, and so forth.  

5.1 MACHINE LEARNING OF LARGE-SCALE GRAPHS 

In aligning with our research goal, we needed to understand the range of possibilities for which 
machine learning of large-scale graphs and their attributes can support urban digital twins. In 
recent years, many graph embedding approaches have been developed. Goyal and Ferrara 
categorized embedding methods into three broad categories: 1) Factorization based, 2) Random 
Walk based, and 3) Deep Learning based [31]. 

Factorization based methods represent the connections between graph nodes as a matrix, and 
then factorize this matrix to obtain the graph embedding. There are different types of matrices 
that can be used to represent the connections, including node adjacency matrix, Laplacian 
matrix, node transition probability matrix, and Katz similarity matrix, among others. Deciding 
how to factorize the representative matrix will depend on the matrix properties. For instance, 
when the problem description matrix is positive semidefinite (e.g., the Laplacian matrix) 
eigenvalue decomposition can be used to perform the factorization; if the obtained matrix is 
unstructured a gradient descent method can be used instead. 

In a random walk-based approach, the embeddings are generated based on stochastic measures 
of similarity instead of deterministic measures. These stochastic similarities are determined by 
performing random walks on the graph. The idea is to have similar embedding for the nodes that 
frequently co-occur on these random walks. DeepWalk [49] was the first graph embedding 
algorithm that adopted this approach, other algorithms include Node2vec [32] and LINE [60]. 
Random walk-based approaches to machine learning of graphs are generally less 
computationally expensive than the factorization-based methods, and are especially useful 
when the graph can only be partially observed, or the graph is too large to measure in its entirety.  

Both the factorization and random walk-based approaches train unique embedding vectors for 
each node independently, which results in several limitations. First, there is an absence of 
parameter sharing between the nodes; this leads to computational inefficiency since the number 
of trainable parameters grows linearly with the number of nodes in the graph. Second, these 
approaches also cannot generalize, they are only able to generate embedding vectors for the 
nodes that were present during the training phase and not for any unseen nodes. Third, these 
approaches lack an ability to incorporate node attributes during embedding generation, when 
node attributes can be highly informative about the node’s position and role in the network. 
Therefore, other approaches that address some or all of the issues mentioned above have 
emerged recently and are referred to as deep learning-based methods. 

Deep learning-based approaches use a deep neural network architecture, generally referred to 
as Graph Neural Networks (GNNs), to generate embedding vectors which depend both on the 
structure and the attributes of the graph. Wu et al. categorize GNNs into four groups: recurrent 
graph neural networks (RecGNNs), convolutional graph neural networks (ConvGNNs), spatial-
temporal graph neural networks (STGNNs), and graph autoencoders (GAEs) [68]. 
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RecGNNs utilize a recurrent layer to generate node embeddings for the graph. This approach 
assumes that a node in a graph exchanges information with its neighboring nodes until a stable 
equilibrium is reached. Although RecGNNs are computationally expensive, they are conceptually 
important and inspired later research on ConvGNNs.  

Unlike RecGNNs, ConvGNNs use different graph convolutional layers to generate node 
embeddings. The main idea is to generate a node representation by aggregating its own features 
and its neighbors’ features. Because graph convolutions are more computationally efficient and 
convenient to combine with other types of neural networks, the popularity of ConvGNNs has 
been rapidly growing in recent years.  

Many alternative deep learning-based methods have been developed in recent years, including 
graph autoencoders (GAEs) and spatial-temporal graph neural networks (STGNNs). These 
frameworks can be built on RecGNNs, ConvGNNs, or other neural network architectures for 
generating graph embeddings. STGNNs aim to model dynamic node inputs, while assuming 
spatial and temporal interdependencies between connected nodes.  

5.2 GRAPH AUTO ENCODERS (GAE) 

GAEs are deep neural architectures that are trained to reconstruct their original input. Figure 14 
shows a high-level architecture for GAE. An encoder takes a graph as its input and systematically 
compresses it into a low-dimensional (embedding) vector. The decoder then takes the vector 
representation and attempts to generate a reconstruction of some user-defined graph analysis 
tool (e.g., adjacency matrix) of the original (graph) input. Encoder-decoder pairs are designed to 
minimize the loss of information between the input graph and the output (i.e., reconstructed) 
graph. These frameworks may be deterministic or probabilistic. 

 
Figure 14. Traditional encoder-decoder approach. 
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Looking ahead, Figure 15 is a schematic for how the embedding process might be integrated in 
a digital twin. We start by extracting a graph representation of the system and determining its 
initial parameters. As time progresses, the digital twin will monitor changes in the system. 
Embeddings will be generated, and machines will be trained to understand a number of salient 
features of acceptable and unacceptable behavior. When an unacceptable behavior is identified, 
recovery procedures will be triggered. Therefore, embeddings will be an essential part of the 
learning process. There is a need to ensure the embedding input to the machine is an accurate 
representation of the information contained in the graph. With this goal in mind, it is clear that 
GAE based approaches are the most suitable for our purposes. 

 

Figure 15. Process flowchart for training and executing machine 

5.3 TEACHING MACHINES TO UNDERSTAND GRAPHS WITH GRAPH AUTOENCODER 

Figure 16 shows the architecture of the GAE framework applied to this case study. Details of the 
following case study are being assembled into a journal paper to support our co-author, Maria’s 
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PhD research. We will discuss the details at a higher-level, and if a draft of the journal paper is 
needed, we can provide in the future. 

 

Figure 16. Flowchart of GAE computations applied to Case Study. 

We start by encoding a four (4)-node graph and its node attributes. The encoder consists of two 
graph convolutional layers and a simple inner product decoder, which aims to decode node 
relational information from generated embeddings by reconstructing the graph adjacency 
matrix. The first convolutional layer takes as input the graph’s node feature matrix 𝑋𝑋 and the 
symmetrically normalized adjacency matrix 𝐴̃𝐴 = D−1/2𝐴𝐴D−1/2,  where 𝐴𝐴 is the adjacency matrix 
with added self connections and 𝐷𝐷 is the diagonal node matrix of 𝐴𝐴. For the purposes of keeping 
the case study as simple as possible, all of the node features are simply assigned a value of 1. 

We next generate the first convolutional layer generates a lower-dimensional feature matrix 
defined as (data not shown): 

 



 

32 

𝑋𝑋� = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝐴̃𝐴𝑋𝑋𝑊𝑊0� 
 

where 𝑊𝑊0  is a trainable parameter matrix initialized to a small random value. In this case study, 
𝑊𝑊0  was initialized (data not shown). The second convolutional layer takes as input the output of 
the previous layer and generates the node embeddings (data not shown): 

 
Z = 𝐴̃𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝐴̃𝐴𝑋𝑋𝑊𝑊0�𝑊𝑊1 
 

where 𝑊𝑊1  is also a trainable parameter matrix initialized to a small random value. In this case 
study, 𝑊𝑊1 was initialized (data not shown).   

The task of the decoder is to reconstruct the adjacency matrix 𝐴𝐴 (with added self-connections) 
from 𝑍𝑍. By applying the inner product on the latent variable 𝑍𝑍 and 𝑍𝑍𝑇𝑇 , the algorithm learns the 
similarity of each node inside 𝑍𝑍. By applying the sigmoid function 𝜎𝜎(∙) the algorithm computes 
the probability of edges existing between the range of 0 and 1, resulting in the reconstructed 
adjacency matrix (data not shown): 

 
𝐴𝐴′ =  𝜎𝜎(𝑍𝑍𝑍𝑍𝑇𝑇) 
 

In order to arrive at the optimal embedding matrix 𝑍𝑍, the 𝑊𝑊0 and 𝑊𝑊1 parameters are 
systematically updated through an Adam optimization [42] of the weighted cross-entropy loss 
between the adjacency matrix 𝐴𝐴 and the soft reconstruction 𝐴𝐴′. The weighted cross-entropy loss 

is calculated where 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 is the number of edges in the graph, and 𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑁𝑁2−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝

. Multiplying 

the positive labels term by 𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 balances the quantity of edges and the non-edge counterparts. 
With the initial values of the weight matrices set above for this case study, 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝, 𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝, and loss 
𝐿𝐿 obtain (data not shown):  

In this first iteration the weight values were set randomly; however, the goal is to find the set of 
weight values that minimize loss. Hence, through Adam optimization we find the direction to 
move the weight values in order to get a lower loss on the next iteration (i.e., gradient). Knowing 
which direction is downhill, we are able to update the weight values. 

After 200 iterations we obtain the node embeddings (data not shown) to reconstruct the final 
graph. Comparing the reconstructed adjacency matrix 𝐴𝐴′ to the original adjacency matrix 𝐴𝐴, we 
can conclude that for this simple case study the GAE framework was able to perfectly reconstruct 
graph topology. 

We now understand the inner architecture of GAE and what limitations it may encounter, as well 
as the ways in which it can be changed to adapt to specific problems. For instance, it is clear that 
in order to obtain a good reconstruction of the input graph, the algorithm depends on the:  

1. Convergence of the Adam optimization.  
2. Encoder architecture 
3. Decoder architecture 
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5.4 CONVERGENCE OF THE ADAM OPTMIZER 

One of the key hyperparameters to set in order to construct an Adam optimizer is the learning 
rate [42]. This parameter scales the magnitude of our weight updates in order to minimize the 
network's loss function. If the learning rate is set too low, training will progress very slowly as we 
are making very small updates to the weights values. However, if ones learning rate is set too 
high, it can cause undesirable divergent behavior in the loss function (i.e., the gradient of the 
weight oscillates back and forth, and it is difficult to make the loss reach the global 
minimum). These cases can be visualized in Figure 17.  

 

 
Figure 17. Effects of learning rate on optimization convergence (“Python Lessons”). 

5.5 ENCODER ARCHITECTURE 

Although Kipf et al. used 2 hidden layers, 32 neurons in the first hidden layer, and 16 neurons in 
the second hidden layer when presenting the GAE architecture [43],  it is possible to modify these 
characteristics of the framework in order to adapt to specific needs. When considering the 
structure of GAE, there are really two decisions that must be made: 1) how many hidden layers 
to actually have in the neural network and 2) how many neurons will be in each of these 
layers. Problems that require more than two hidden layers were rare prior to deep learning. Two 
or fewer layers will often suffice with simple data sets. However, with complex datasets 
additional layers can be helpful. According to Heaton [35] a neural network with no hidden layers 
is only capable of representing linear separable functions or decisions, a network with one 
hidden layer can approximate any function that contains a continuous mapping from one finite 
space to another, a network with two hidden layers can represent an arbitrary decision boundary 
to arbitrary accuracy with rational activation functions and can approximate any smooth 
mapping to any accuracy, and a network with more than two layers can learn complex 
representations (i.e. feature engineering) for layer layers [35]. For our purposes, we are 
interested in investigating whether adding more layers to GAE algorithm can bring benefits 
(i.e., faster convergence, lower loss, etc.). 

Deciding the number of hidden layers is only a small part of the problem, we must also determine 
how many neurons will be in each of these hidden layers. Using too few neurons in the hidden 
layers can result in underfitting. Underfitting occurs when there are too few neurons in the 
hidden layers to adequately process information in a complicated data set [35]. Too many 
neurons on the other hand can result in overfitting. Overfitting occurs when the neural network 
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has so much information processing capacity that the limited amount of information contained 
in the training set is not enough to train all of the neurons in the hidden layers [35]. Additionally, 
a large number of neurons in the hidden layers can increase the time it takes to train the network 
to a point where it is impossible to adequately train the neural network [35]. Obviously, some 
compromise must be reached between too many and too few neurons in the hidden layers. 
Ultimately, the selection of an architecture for our neural network will come down to avoiding 
underfit, overfit and convergence issues.  

Learning curves are widely used in machine learning for algorithms that learn (optimize their 
internal parameters) incrementally over time. The shape and dynamics of a learning curve can 
be used to diagnose the behavior of a machine learning model and in turn suggest changes that 
may be made to improve learning and/or performance. For our purposes, we are interested in 
investigating how learning curves can help us adapt the GAE architecture to avoid the issues 
described above.  

5.6 NEURAL NETWORKS AND GRAPH AUTOENCODER 

The selection of an architecture for our neural network will come down to avoiding underfit, 
overfit and convergence issues. Learning curves are a widely used tool in machine learning for 
algorithms that learn (optimize their internal parameters) incrementally over time. The shape 
and dynamics of a learning curve can be used to diagnose the behavior of a machine learning 
model and in turn suggest changes that may be made to improve learning and/or performance. 
For our purposes, we are interested in investigating how learning curves can help us adapt the 
GAE architecture and answer the following research question: Can learning curves help us find 
the optimal number of neurons and layers? In this report we use simple case studies from 
common system topologies (see Figure 18), apply GAE framework to them, and use learning 
curves to analyze the effects of model architecture to performance.  

 
Figure 18. Common system topologies. 
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5.6.1 LINE TOPOLOGY 

 
Figure 19. Six node line topology with node attributes. 

In order to attempt reconstructing the line topology shown in Figure 19, we start with the simple 
architectural design consisting of one hidden layer, with one neuron, and a learning rate of 0.01 
(see Figure 20). With this configuration the algorithm arrived at a minimum cross-entropy loss 
value of 0.30086634 and was not able to obtain an isomorphic graph topology reconstruction 
(i.e., graph edit distance [GED] of 3). We then added one more neuron to the hidden layer (see 
Figure 21) and obtained a minimum cross-entropy loss value of 0.002684557 and an isomorphic 
graph reconstruction (i.e., graph edit distance of 0; essentially identical). 

 
Figure 20. Learning curve for line topology with one hidden layer and one neuron architecture 

(Layer size = 1 neuron, Min Loss = 0.30086634, Min GED = 3) 
 

 
Figure 21. Learning curve for line topology with one hidden layer and two neurons architecture. 
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(Layer size = 2 neurons, Min Loss = 0.002684557, Min GED = 0) 

Hence, using the learning curve we can conclude that the six-node line topology requires a 
minimum of one hidden layer with a minimum of two neurons in the hidden layer. Following the 
same approach used for the line topology we incrementally added neurons to the hidden layer 
until an isomorphic graph reconstruction was obtained. Results are shown in the sections to 
follow for other types of graphs. 

5.6.2 RING TOPOLOGY 

For the ring topology shown in Figure 22, isomorphic reconstruction was obtained at a minimum 
cross-entropy loss of 0.0012228565 with a one layer, two neurons architecture.  

 
Figure 22. Six-node ring topology with node attributes. 

 

 
Figure 23. Learning curve for ring topology with one hidden layer with one neuron architecture. 

(Layer size = 1 neuron, Min Loss = 0.37929922, Min GED = 4) 
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Figure 24. Learning curve for ring topology with one hidden layer with two neurons architecture. 

(Layer size = 2 neurons, Min Loss = 0.0012228565, Min GED = 0) 

5.6.3 FULLY CONNECTED (FC) TOPOLOGY 

For the FC topology shown in Figure 25, isomorphic reconstruction was obtained at a minimum 
cross-entropy loss of 0.0002543262 with a one layer, one neuron architecture.  

 
Figure 25. Six node FC topology with node attributes. 

 

 
Figure 26. Learning curve for FC topology with one hidden layer with one neuron architecture. 

(Layer size = 1 neuron, Min Loss = 0.0002543262, Min GED = 0) 
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5.6.4 STAR TOPOLOGY 

For the star topology shown in Figure 27, isomorphic reconstruction was obtained at a minimum 
cross-entropy loss of 0.0017013812 with a one layer, five neurons architecture.  

 
Figure 27. Six node star topology with node attributes. 

 

 
Figure 28. Learning curve for star topology with one hidden layer with one neuron architecture. 

(Layer size = 1 neuron, Min Loss = 0.4893911, Min GED = 10) 
 

 
Figure 29. Learning curve for star topology with one hidden layer with two neurons architecture. 
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(Layer size = 2 neurons, Min Loss = 0.3965266, Min GED = 4) 
 

 
Figure 30. Learning curve for star topology with one hidden layer with three neurons architecture. 

(Layer size = 3 neurons, Min Loss = 0.21524647, Min GED = 3) 
 

 
Figure 31. Learning curve for star topology with one hidden layer with four neurons architecture. 

(Layer size = 4 neurons, Min Loss = 0.1004491, Min GED = 1) 
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Figure 32. Learning curve for star topology with one hidden layer with five neurons architecture. 

(Layer size = 5 neurons, Min Loss = 0.0017013812, Min GED = 0) 

5.6.5 MESH TOPOLOGY 

For the mesh topology shown in Figure 33, isomorphic reconstruction was obtained at a 
minimum cross-entropy loss of 0.0047862437 with a one layer, three neurons architecture.  

 
Figure 33. Six-node mesh topology with node attributes. 

 

 
Figure 34. Learning curve for mesh topology with one hidden layer with one neuron architecture. 

(Layer size = 1 neuron, Min Loss = 0.45157686, Min GED = 4) 
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Figure 35. Learning curve for mesh topology with one hidden layer with two neurons architecture. 

(Layer size = 2 neurons, Min Loss = 0.13661459, Min GED = 1) 
 

 
Figure 36. Learning curve for mesh topology with one hidden layer with three neurons architecture. 

(Layer size = 3 neurons, Min Loss = 0.0047862437, Min GED = 0) 

5.6.6 TREE TOPOLOGY 

For the tree topology shown in Figure 37, isomorphic reconstruction was obtained at a minimum 
cross-entropy loss of 0.0025835969 with a one layer, three neurons architecture.  

 
Figure 37. Six-node tree topology with node attributes. 



 

42 

 
 

 
Figure 38. Learning curve for tree topology with one hidden layer with one neuron architecture. 

(Layer size = 1 neuron, Min Loss = 0.33715013, Min GED = 4) 
 

 
Figure 39. Learning curve for tree topology with one hidden layer with two neurons architecture. 

(Layer size = 2 neurons, Min Loss = 0.10415384, Min GED = 1) 
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Figure 40. Learning curve for tree topology with one hidden layer with three neurons architecture. 

(Layer size = 3 neurons, Min Loss = 0.0025835969, Min GED = 0) 

5.7 URBAN TOPOLOGY 

We now have learned through experimenting with different type of graph topologies, and we 
look to apply this knowledge to a larger problem that relates back to our case study. In order to 
access the scalability of our model we use a water network topology with pressure values as 
node attributes. The topology was obtained from the hydraulic simulation software EPANET, 
contains 36 nodes, and is shown in Figure 41. An isomorphic reconstruction was obtained at a 
minimum cross-entropy loss of 0.00196 with a one layer, 74 neurons architecture. As shown in 
the results in Figure 42, the approach shows that we can scale to larger graphs. The key question 
is: can we determine the number of neurons needed in advance based on the input? 
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Figure 41. Urban topology with node attributes. 
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Figure 42. Learning curve for urban topology graph and one hidden layer containing 74 nodes. 

5.8 GAE ARCHITECTURE AND THE OPTIMIZATION ALGORITHM 

For most of the use cases used in this report, the GAE algorithm was able to reconstruct the input 
graph with one convolutional layer and no activation functions as discussed in the prior 
subsections. Hence, this will be the general encoder architecture used moving forward. With this 
set up, the encoder consists of one graph convolutional layer and a simple inner product 
decoder, which aims to decode node relational information from generated embeddings by 
reconstructing the graph adjacency matrix. The convolutional layer takes as input the graph’s 
node feature matrix 𝑋𝑋 and the symmetrically normalized adjacency matrix 

 A� = 𝐷𝐷−12A𝐷𝐷−12, where 𝐴𝐴 is the adjacency matrix with added self-connections and 𝐷𝐷 is the 
diagonal node matrix of 𝐴𝐴. This convolutional layer generates a lower dimensional node 
embedding defined as 𝑍𝑍 = A�𝑋𝑋𝑋𝑋, where W is a trainable parameter matrix.  

The purpose of the decoder is to reconstruct the adjacency matrix 𝐴𝐴 from 𝑍𝑍. By applying the 
inner product on the latent variable 𝑍𝑍 and 𝑍𝑍𝑇𝑇, the algorithm learns the similarity of each node 
inside 𝑍𝑍. By applying the sigmoid function 𝜎𝜎 the algorithm computes the probability of edges 
existing between the range of 0 and 1. Therefore, the reconstructed adjacency matrix is defined 
as: 𝐴𝐴′ = 𝜎𝜎(𝑍𝑍𝑍𝑍𝑇𝑇).  

In order to arrive at the optimal embedding matrix 𝑍𝑍, the 𝑊𝑊 parameters are systematically 
updated through an Adam optimization of the weighted cross-entropy loss 𝐿𝐿 between the 
adjacency matrix 𝐴𝐴 and the soft reconstruction 𝐴𝐴′.  

NOTE: The weighted cross-entropy loss 𝐿𝐿 equations have been removed until this research has 
been published in a journal to support our co-author, Maria Coelho’s PhD dissertation. The Adam 
optimization uses a combination of extensions to stochastic gradient descent (i.e., adaptive 
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gradient estimation and root mean square propagation) to estimate gradients and their 
moments as a moving average. These gradient estimates allow us to find the direction in which 
the weight parameters 𝑊𝑊 should be adjusted in order to reduce the weighted cross-entropy loss.  

5.9 THE HESSIAN AND THE OPTIMIZATION ALGORITHM 

Our ongoing research is considering the “shape” of the weighted cross-entropy loss function (i.e. 
whether it is convex or non-convex) to identify if the optimization has reached a minimum or 
a saddle point. In 1-variable calculus, we can look at the second derivative at a point and tell 
what is happening with the concavity of a function (positive implies concave up, negative implies 
concave down). In multivariate calculus the Hessian matrix is the equivalent to the second 
derivative, as it contains all the second partial derivatives of a function. The eigenvalues of the 
Hessian give information about the second partial derivatives of the underlying function along 
specific directions: 

 If the sign of the eigenvalue is positive, the function is convex (i.e., multivariable 
equivalent to “concave up”) along that direction.  

 

 If the sign of the eigenvalue is negative, the function is concave (i.e., multivariable 
equivalent to “concave down”) along that direction.   

 

 If the eigenvalues are mixed (some positive, some negative), you have a saddle point.  

 

We have found an expression for the Hessian matrix of the weighted cross-entropy loss function. 
The Hessian matrix can reveal information about the shape of the function and ensure the 
optimization algorithm has reached a minimum instead of a saddle point. We can provide 
additional details on the Weighted Cross-Entropy Loss Hessian equation that support the 
analysis the shape of the cross-entropy cost function after our research is published.  

5.10 NEURAL NETWORK ARCHITECTURE FOR CLASSIFICATION 

As GAE is a neural network-based algorithm. A first step towards achieving our objective is to 
understand how neural networks learn graph topology. We can divide this task into two sub-
tasks: (1) understanding the role of neurons in the learning, and (2) understanding the role of 
layers in the learning.  

https://en.wikipedia.org/wiki/Convex_function
https://en.wikipedia.org/wiki/Saddle_point
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It was shown in Figure 43 by Lippmann in his work “An Introduction to Computing with Neural 
Nets” presented in 1987 [46] that:  

 Neural networks with no hidden layers are capable of solving only linearly separable 
problems, correctly classifying data sets where the classes can be separated by one 
decision plane.  

 Neural networks with one hidden layer and two hidden layers can approximate any 
desired bounded continuous function. The neurons in the first hidden layer generate 
decision planes to divide the input space. Neurons in the second hidden layer form 
regions as intersections of these decision planes.  

 Output neurons form unisons of the regions.  

 
Figure 43. An Introduction to Computing with Neural Nets 

The topology learning problem can be seen as a two-class classification problem, we expect the 
system to output 1 for existing links or 0 for non-existing links. A famous two class classification 
problem in the domain of AI is the classical XOR problem. It has two input values (0 or 1), and 
outputs a value of 0 or 1 depending on the combination of the inputs. It can be depicted 
graphically as follows:   
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Figure 44. Two Class Classification using XOR Example 

The neural network needs to produce two different decision planes to separate the input data 
based on the output classification as reflected in Figure 45.  

 
Figure 45. Decision Planes 

Therefore, the XOR problem can be solved with one hidden layer with two nodes (since two 
decision planes are needed); and one output layer with one node. The neural network 
architecture is shown in Figure 46:  
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Figure 46. Representation of Neural Network Architecture 

Learning a network topology can be framed similarly to the XOR problem. Imagine a directed line 
network with six nodes:  

 

Its topology can be represented by an adjacency matrix:  𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

 

The adjacency matrix can be graphically represented as shown in Figure 47:  

 
Figure 47. Representation of Classification for Adjacency Matrix 

The two decision planes were derived through the same neural network architecture as the XOR 
problem. Hence the number of neurons in a neural network hidden layer is determined by the 

X1 X2 
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number of decision planes required to separate the classes. This is the basic approach we are 
applying to other graphs. We started using this approach on the examples discussed in Section 
5.3. For some types of graphs the classification results was not as clean as that shown in Figure 
47, and we investigated other algorithms for matrix reordering, which have positive results. 

6 DELIVERABLES AND EVENTS 

We have provided all of the required deliverables, which include: 

 A008 Status report (bi-monthly) 
 A009 Technical and Management Workplan  
 A013 Final Technical Report (this report) – Report will include recommendations on next 

steps for research towards potential future deployment 
 Kick off meeting – required before work starts (Done) 

In addition, our journal papers are cited int this report, and can be provided to our sponsor on 
request. We anticipate that Maria Coelho’s PhD dissertation work will result in two more journal 
papers beyond the conclusion of this one-year study.  

We have presented our research at the SERC Sponsor Review on November 18, 2020. These 
presentations were expanded from the AI4SE/SE4AI Research Workshop in October 2020. A copy 
of Maria Coelho’s PhD Dissertation (currently scheduled for completion, May 2022), journal and 
conference papers, demonstrations of twin capability, and computer-based models and 
software tools will be provided to the sponsor on request. We hope that these two events 
provided the necessary characterizations to show case our research for AI-ML design methods. 

7 SUMMARY 

Our long-term research objective is design of digital twins that work as operating systems, with 
AI and ML formalisms working side-by-side as a team providing complementary and supportive 
roles in the collection of data, identification (or prediction) of events, and support for automated 
decision making throughout the system lifecycle. The current project has been motivated by the 
common characteristics and needs of two case study applications: (1) Skyzer UAV search and 
rescue, and (2) vehicle traversal at a traffic intersection. These characteristics and needs are: (1) 
presence of multiple domains, (2) event-driven behaviors, (3) streams of heterogeneous data 
and (4) scenarios that are dynamic and time critical. To fully address these challenges, 
contributions are needed on AI and ML formalisms to deal with: (1) system structure, and (2) 
event- and data-driven system behaviors. Our concerns for this project have been on finding 
ways to represent and work with the system structure of graphs and networks. 

On the semantic modeling and reasoning side, basic questions include addressed how to 
represent various types of graph and create hooks to backend computational support for graph 
analysis. We have proposed a simple graph ontology that maps directly to JGraphT, a powerful 
software for graph analysis, and demonstrated that graph models and path planning algorithms 
can respond to changing environmental conditions.  
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Machine learning is the most interesting and challenging part of the proposed framework. As a 
starting point, this project has focused on the challenge of learning the structure of networks and 
graphs. It is important to note that because the motivating case study applications are safety and 
life critical, if a machine is going to learn the structure of a graph, then that representation needs 
to be accurate and complete. This requirement sets our work apart from graph learning 
procedures for social networks, which can tolerate approximations. 

To summarize the efforts and accomplishment, we have:  

 Analyzed different graph embedding approaches and explored the role that Graph 
Autoencoders (GAE) can play in the representation of network structures. 

 Found that guarantees of correct reconstruction of the graph topology and attributes 
using the GAE framework depend on the convergence of the optimization algorithm, the 
encoder architecture, and the decoder architecture. 

 Investigated how learning curves can help diagnose underfit, overfit and optimization 
convergence issues, and assist in the design of the GAE architecture. 

 Investigated requirements for convergence of the optimization algorithm. 
 Devised an initial formula that allows us to look at the input graph and determine the 

neural network architecture that is required to reconstruct it precisely with a high degree 
of certainty.  

 Discovered that from a numerical analysis perspective, some of the early efforts in 
machine learning for graphs structures are, in fact, too conservative. This observation 
stems from the well-known XOR / XNOR problem, and analogies that can be drawn to 
binary matrix representations of connectivity relations in graphs.  

We have made unique progress and have been able to share work in SERC events such as the 
workshop on AI4SE and SE4AI. Our preliminary results have already been published in the 
International Journal of Advances in Network and Services [19]. 

7.1 NEXT STEPS 

One of the hallmarks of good research is solving problems, which, in turn, open the door to even 
more interesting and challenging problems. To that end, we certainly have a much better 
understanding of the opportunities and challenges ahead than a year ago. 

While our graphs of interest may not be of the order of billions of nodes (e.g., think Facebook), 
graphs and network models in model-based engineering and urban setting could still be very 
large. Graph representations need to be efficient, scalable, and easily amenable to extension. 
The latter suggests a strong need for compositional approaches to the learning and assembly of 
network models. Future work should include development of a formula that characterizes the 
neural network size (no of neurons and no of layers) needed to learn a graph structure. We 
already know that a minimal neural network architecture depends on the ordering of the 
vertices, so an associated problem is development of algorithms to bundle the adjacency 
relations into clusters (or islands). A first cut at this problem would minimize the number and 
shapes of the islands.  Knowing the number of clusters present in the reordered adjacency is 
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important because it will determine the number of decision planes required to classify the data, 
and hence determine the number of neurons/layers required to build a good neural network.  

To create fully operational digital twin demonstrations, future work also needs to address ways 
in which AI and ML can work together to support event- and data-driven decision making. Given 
that the semantic side of the formulation is event driven (i.e., semantic graphs respond to 
events), the pivotal role for ML is in sensing incoming data streams and identifying either objects 
or anomalies in behavior that require attention. These objects could be in an image, sensed from 
audio (e.g., a vehicle at an intersection hears an ambulance) or inferred from a sensed data 
stream. Anomalies in behavior can be modeled with recurrent neural networks coupled with 
statistical algorithms for the identification of outlier measurements.   

Finally, work is needed to connect the ML and AI modules (i.e., create the red arrows in Figure 2 
and Figure 3) and determine a protocol for transmission of events. We are hopeful that if a 
machine has an understanding of the network structure is spatially and temporally aware, then 
it will also have the ability to send events that are more precise than would otherwise be possible.  
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8 ACRONYMS AND ABBREVIATION 

This section provides a list of some of the terms used throughout the paper. The model lexicon 
should have all of these terms and many others. 

2D Two dimensions 
3D Three dimensions 
AI Artificial Intelligence 
AI4SE Artificial Intelligence for Systems Engineering 
ConvGNN convolutional graph neural networks 
DANE Dynamic Attribute Network Embedding 
DSM Digital System Model 
DE Digital Engineering 
DoD Department of Defense 
GAE Graph Autoencoder 
GNN Graph Neural Networks 
IEEE Institute of Electrical and Electronics Engineers 
JTS Java Topology Suite 
MBE Model Based Engineering 
MCE Model Centric engineering 
MBSE Model Based System Engineering 
MCE Model-Centric Engineering 
ML Machine Learning 
NDIA National Defense Industrial Association 
OSM Open Street Map 
OWL Web Ontology Language 
RecGNN recurrent graph neural networks 
RDF Resource Description Framework 
RT Research Task 
SE System Engineering 
SERC Systems Engineering Research Center 
SE System Engineering 
SE4AI Systems Engineering for Artificial Intelligence 
SPARQL SPARQL Protocol and RDF Query Language 
STGNN spatial-temporal graph neural networks 
SW Software 
SWT Semantic Web Technology 
UAV Unmanned Aerial Vehicle 
WRT Washington Research Task 
 
 

9 TRADEMARKS 

Cameo Simulation Toolkit is a registered trademark of No Magic, Inc. 
CREO is a registered trademark of PTC Corporation. 
Java™ and J2EE™ are trademark of SUN Microsystems 
Java is trademarked by Sun Microsystems, Inc. 
XML™ is a trademark of W3C 
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All other trademarks belong to their respective organizations. 
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